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Abstract 

Plant breeders can select cultivars with physiological traits that confer a growth or 

yield advantage to individual plants. The extent to which single plant characters 

influence canopy performance depends on interactions between vegetation and the 

atmosphere and the non-linear response of physiological processes to the environment. 

Better understanding of the scaling of photosynthesis and water use will allow the 

assessment of changes to leaf scale physiological traits at the canopy scale and prediction 

of the response of vegetation to climate change. This thesis examines the relationship 

between reduced stomatal conductance and canopy scale water-use efficiency (ratio of 

instantaneous net canopy photosynthesis to total canopy evaporation). 

A multi-disciplinary research project was established with two large paddocks of 

wheat with cultivars of contrasting leaf-scale water-use efficiency, due to inherent 

differences in stomatal conductance. Intensive measurements were made of C02 and 

H20 fluxes at leaf and canopy scales. Different stomatal conductances at the leaf scale 

were reflected at the. canopy scale, although their effects on transpiration were reduced 

due to canopy boundary layers and soil evaporation. Comparison of scaling from leaf to 

canopy in the two crops was complicated by their different leaf area indices. To facilitate 

scaling from leaves to canopies, models of stomatal conductance, leaf photosynthesis and 

radiation penetration in canopies were used. 

A comparison of several models of conductance with field data found that using the 

correlation of conductance with photosynthesis was the best approach. The same model 

was found to work equally well at the canopy scale, using parameters derived from leaf 

scale data. 

Canopy photosynthesis was modelled with a biochemical model of leaf 

photosynthesis incorporated into different integration schemes. A canopy model which 

divided the canopy into a single layer of sunlit and shaded leaves was found to be as 

accurate as a multi-layer model, but simpler and allowed incorporation of within-canopy 

profiles of photosynthetic capacity. A big-leaf model of canopy photosynthesis was 

found acceptable if tuned, but the uncertainties increased when it was used to predict 

responses of canopies with different properties. Photosynthetic capacity, the main 

parameter of the canopy photosynthesis model, was found to decrease during the day 

under conditions of mild water stress at both the leaf and canopy scale. 
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Combined models of photosynthesis, conductance and energy balance accurately 

described diurnal variation of canopy gas exchange. The model predicted that a 40% 

reduction in stomatal conductance would result in 36% greater leaf transpiration 

efficiency and 19% greater canopy transpiration efficiency (ratio of gross canopy 

photosynthesis to canopy transpiration) which compared favourably with field 

measurements, but depended on the magnitude of the conductance and wind speed. 

Measurements of air temperature, humidity and surface temperature along a transect 

across the interface between the two crops with different evaporation rates, showed that 

advection did occur, but that it had minimal impact on canopy fluxes. 

It was concluded that reduced stomatal conductance does result in reduced 

transpiration and better transpiration efficiency at the canopy scale, but that canopy 

boundary layers and greater soil evaporation reduce the benefit. In this case reduced 

conductance was also accompanied by greater yield, although this result depends on the 

availability of soil water. The models presented were an effective tool for scaling non­

linear physiological processes from leaves to canopies and provide a useful framework 

for assessing the impact of climate change on vegetation. 

v 



Contents 
Statement ................................................................................................................. ii 
Acknowledgments .................................................................................................... iii 
Abstract. ................................................................................................................... iv 
Contents ................................................................................................................... vi 
List of Figures .......................................................................................................... xi 
List of Tables ............................................................................................................ xvi 
List of Symbols ......................................................................................................... xvii 

CHAPTER ONE: General Introduction ............................................................... 1 

1.1. Introduction ......................................................................................... 3 
1.1.1. Overview ............................................................................... 3 
1.1.2. Modelling: A tool for scaling ................................................. .4 

1.2. Water-Use ............................................................................................ 7 
1.2.1. Leaf Transpiration .................................................................. 7 
1.2.2. Canopy Evaporation ............................................................... 9 
1.2.3. Scaling Conductance and Evaporation .................................... 12 

1.3. Carbon Dioxide Fluxes ......................................................................... 14 
1.3.1. Leaf Photosynthesis ................................................................ 14 
1.3.2. Canopy C02 Fluxes ................................................................ 15 

1.4. Water-Use Efficiency ............................................................................ 21 
1.4 .1. Instantaneous Transpiration Efficiency .................................... 21 
1.4.2. Carbon-Isotope Discrimination ............................................... 22 
1.4.3. Scaling Water-Use Efficiency ................................................. 23 

1.5. Advection ............................................................................................. 25 
1.6. Thesis Hypothesis and Outline .............................................................. 27 

CHAPTER TWO: Material and Methods ............................................................ 29 

Summary ....................................................................................................... 31 
2.1. Laboratory Gas Exchange ..................................................................... 32 

2.1.1. Gas Exchange System ............................................................ 32 
2.2. Field Site .............................................................................................. 35 

2.2.1. Agronomy .............................................................................. 35 
2.3. Leaf gas exchange ................................................................................ 37 
2.4. Canopy fluxes ....................................................................................... 38 

2.4.1. Ventilated Chambers .............................................................. 38 
2.4.2. Bowen ratio ........................................................................... 41 
2.4.3. Eddy correlation ..................................................................... 42 

2.5. Soil fluxes ............................................................................................. 44 
2.5.1. Gas exchange chamber ........................................................... 44 
2.5.2. Mini-lysimeters ....................................................................... 44 
2.5.3. Neutron probes ...................................................................... 45 
2.5.4. Time domain reflectometry .................................................... .45 
2.5.5. Lysimeters .............................................................................. 46 

VI 



2.6. Transect Measurements ........................................................................ 47 
2.6.1. Flying fox ............................................................................... 47 
2.6.2. Mono-rail ............................................................................... 50 

CHAPTER THREE: Water-Use Efficiency of Leaves and Canopies .................. 53 

Summary ...................................................................................................... -55 
3.1. Introduction ......................................................................................... 56 
3.2. Experimental Methods .......................................................................... 58 

3.2.1. Analysis ................................................................................. 59 
3 .3. Results and Discussion ......................................................................... 62 

3 .3 .1. Comparison of Canopy Flux Measurement Techniques ........... 66 
3.3.2. Comparison of Crops ............................................................. 83 

3.4. Further Discussion and Conclusions ..................................................... 94 
3.4.1. Stomata! control of evaporation ............................................. 94 
3.4.2. Scaling from leaves to canopies .............................................. 94 
3.4.3. Comparison of canopy measurement techniques ..................... 96 
3.4.4. Canopy boundary layers ......................................................... 97 

CHAPTER FOUR: Modelling Stomatal Conductance ......................................... 99 

Summary ...................................................................................................... 101 
4.1. Introduction ......................................................................................... 102 
4.2. Models ................................................................................................. 106 

4.2.1. Jarvis type models·····································:···························· 106 
4.2.2. Ball-Berry type model ............................................................ 107 
4.2.3. CJE/iJA models ........................................................................ 108 

4.3. Experimental Methods .......................................................................... 115 
4. 3 .1. Laboratory measurements ...................................................... 115 
4.3.2. Field measurements ................................................................ 115 

4.4. Results ................................................................................................. 116 
4.4.1. Laboratory measurements ...................................................... 116 
4.4.2. Field measurements .................................... : ........................... 118 
4.4.3. Comparison of models ............................................................ 120 

4.5. Discussion ............................................................................................ 128 
4.5.1. Stomata! response to air humidity ........................................... 128 
4.5.2. Use of A to predict g .............................................................. 129 
4.5.3. CJE/CJA models ........................................................................ 129 

4.6. Conclusions ........................................................................................... 131 
4.7. Appendices: ......................................................................................... 132 

4.7.1. Partial derivatives of the CJE/CJA model.. .................................. 132 
4. 7 .2. Derivation of the combination equation with isothermal 

net radiation .................................................................................. 133 

CHAPTER FIVE: Scaling Conductance and Transpiration ................................ 137 

Summary ................................................................... : .................................. 139 
5.1. Introduction ......................................................................................... 140 

vii 



5.2. Model. .................................................................................................. 143 
5.2.1. Scaling Conductance .............................................................. 143 
5.2.2. Canopy Transpiration ............................................................. 148 

5.3. Experimental Methods .......................................................................... 149 
5.4. Results ................................................................................................. 151 

5.4.1. Aerodynamic Conductance ..................................................... 151 
5.4.2. Surface Temperature .............................................................. 152 
5.4.3. Modelling Canopy Conductance ............................................. 154 
5.4.4. Predicting Canopy Conductance from Leaf Data ..................... 157 
5.4.5. Canopy Transpiration ............................................................. 160 
5.4.6. Equilibrium Evaporation ......................................................... 163 

5.5. Discussion ............................................................................................ 165 
5.6. Conclusions .......................................................................................... 168 
5.7. Appendix: Stability corrections for aerodynamic resistance 
calculations ................................................................................................... 169 

5. 7 .1. Theoretical context ................................................................. 169 
5.7.2. Monin-Obukhov similarity theory ........................................... 170 
5. 7.3. Aerodynamic resistances ......................................................... 172 

CHAPTER SIX: Models of Canopy Photosynthesis ............................................. 175 

Summary ....................................................................................................... 177 

6.1. Introduction········•·················:···························································:·· 178 
6.2. Model. .................................................................................................. 182 

6.2.1. Leaf Photosynthesis ................................................................ 182 
6.2.2. Stomata! Conductance and Intercellular C02 •••••••••••••••••••••••••• 190 
6.2.3. Light penetration in canopies .................................................. 190 
6.2.4. Distribution of leaf nitrogen in canopies .................................. 208 
6.2.5. Canopy Photosynthesis ........................................................... 209 

6.3. Results & Discussion ............................................................................ 217 
6.3.1. Distribution of Leaf Nitrogen and Absorbed Light.. ................ 217 
6.3 .2. Optimal Distribution of Leaf Nitrogen .................................... 220 
6.3.3. Comparison of Canopy Photosynthesis Models ....................... 223 

6.4. Further Discussion & Conclusions ........................................................ 228 

CHAPTER SEVEN: Scaling Up Photosynthesis ................................................... 229 

Summary ....................................................................................................... 231 
7 .1. Introduction ......................................................................................... 232 
7 .2. Model. .................................................................................................. 234 

7 .2.1. Photosynthetic Capacity of Leaves ......................................... 234 
7 .2.2. Photosynthetic Capacity of Canopies ...................................... 235 
7. 2.3. Daily absorbed light profile ..................................................... 236 

7.3. Experimental Methods .......................................................................... 240 
7 .4. Results ................................................................................................. 242 

7.4.1. Canopy nitrogen and leaf area distribution .............................. 242 
7 .4.2. Soil Respiration ...................................................................... 244 

viii 



7.4.3. Canopy Respiration ................................................................ 246 
7.4.4. Leaf photosynthetic capacity .................................................. 249 
7.4.5. Canopy Photosynthetic Capacity ............................................ 254 
7.4.6. Comparison of Model with Data ............................................ 255 
7.4.7. Sensitivity analysis ................................................................. 259 

7.5. Discussion ............................................................................................ 262 
7 .5 .1. Variation of photosynthetic capacity ....................................... 262 
7.5.2. Comparison of model with canopy flux data ........................... 263 

7.6. Conclusions .......................................................................................... 266 
7. 7. Appendix: Atmospheric attenuation of PAR ......................................... 267 

CHAPTER EIGHT: Combined models of Photosynthesis, Conductance 
and Transpiration ........................................................................................ 271 

Summary ............................................................. ' ......................................... 273 
8.1. Introduction ......................................................................................... 274 
8.2. Methods ............................................................................................... 276 

8.2.1. Leaf energy balance ................................................................ 276 
8.2.2. Combination equations for Sun/Shade canopy model.. ............ 278 
8.2.3. Within-Canopy Profiles for the Multi-Layer Model.. ............... 286 

8.3. Results and Discussion ......................................................................... 287 
8.3.1. Multi-Layer Model.. ............................................................... 287 
8.3.2. Sun/Shade Canopy Model ...................................................... 297 
8.3.3. Comparison with data ............................................................ 301 
8.3.4. Canopy Responses to C02 ..................................................... 305 
8.3.5. Scaling Transpiration Efficiency ............................................. 308 

8.4. Further Discussion and Conclusions ..................................................... 310 
8.4.1. Sun/Shade canopy model ....................................................... 310 
8.4.2. Leaf temperature and free convection ..................................... 311 
8.4.3. Response of photosynthesis to temperature ............................ 311 
8.4.4. Sensitivity of Transpiration Efficiency to Leaf Properties ........ 311 

8.5. Appendices ........................................................................................... 313 
8.5.1. Derivation of the combination equation with isothermal 

net radiation .................................................................................. 313 
8.5.2. Leaf temperature with isothermal radiation ............................. 314 
8.5.3. Derivation of a two layer evaporation model with molar 

units .............................................................................................. 315 
8.5.4. Isothermal radiation in the Sun/Shade canopy model .............. 316 

CHAPTER NINE: Advection between Crops with Different Conductances ....... 319 

Summary ...................................................................................................... 321 
9.1. Introduction ......................................................................................... 322 
9.2. Methods ............................................................................................... 324 

9.2.1. Flux calculations .................................................................... 325 
9 .2.2. Canopy Conductance ............................................................. 328 

9.3. Results ................................................................................................. 329 

ix 



9.3.1. Transition from High to Low Conductance ............................. 330 
9.3.2. Transects with no contrast in Conductance ............................. 340 

9.4. Discussion ............................................................................................ 344 
9 .5. Conclusions .......................................................................................... 346 

CHAPTER TEN: General Discussion ................................................................... 347 

10.1. Preamble ................................................................................ 348 
10.2. Models of Stomatal Conductance and Photosynthesis ............. 348 
10.3. Scaling and Canopy Photosynthesis Models ............................ 350 
10.4. Water-Use Efficiency ............................................................. 352 
10.5. Final Words ............................................................................ 353 

References ................................................................................................................ 355 

x 



List of Figures 

CHAPTER TWO: Material and Methods ................................................................. 29 

Figure 2.1 Flow diagram of laboratory gas exchange system .................................... 34 
Figure 2.2 Layout of ventilated tents for measuring canopy gas exchange ............. ;:. 39 
Figure 2.3 Layout of field gas analysis system used to measure canopy .................... 40 
Figure 2.4 The 'flying fox' system of moving sensors ................................................ 48 
Figure 2.5 The monorail system of moving sensors .................................................. 51 
Figure 2.5 The monorail system of moving sensors .................................................. 51 

CHAPTER THREE: Water-Use Efficiency of Leaves and Canopies ......................... 53 

Figure 3.1 Comparison of Matong and Quarrion leaf gas exchange in 1989 ............. 62 
Figure 3.2 Canopy leaf area 1989 ............................................................................ 63 
Figure 3.3 Canopy leaf area 1990 ............................................................................ 64 
Figure 3.4 Partitioning of crop biomass in 1990 ....................................................... 64 
Figure 3.5 Comparison of Matong and Quarrion leaf gas exchange in 1990 ............. 65 
Figure 3.6 Diurnal changes of evaporation measured by different techniques ............ 66 
Figure 3.7 Comparison of tent data with lysimeters .................................................. 67 
Figure 3.8 Comparison of Bowen ratio data with lysimeters ..................................... 68 
Figure 3.9 Diurnal variation of canopy C02 fluxes measured by tents and 

Bowen ratio ·systems ..................................................................................... 69 
Figure 3 .10 Comparison of net fluxes measured by tents and Bowen ratio 

systems for the Matong crop ......................................................................... 70 
Figure 3.11 Comparison of net fluxes measured by tents and Bowen ratio 

systems for the Quarrion crop ....................................................................... 71 
Figure 3.12 Temperature increase inside the tents .................................................... 73 
Figure 3.13 Comparison of gross photosynthesis and transpiration measured 

by tents and Bowen ratio systems for the Matong crop .................................. 7 4 
Figure 3.14 Comparison of gross photosynthesis and transpiration measured by 

tents and Bowen ratio systems for the Quarrion crop ..................................... 75 
Figure 3.15 Diurnal variation of the effect of the tent on measurements of beam 

and diffuse light ............................................................................................ 7 6 
Figure 3 .16 Diagram of tent with the beam path from the sun to PAR sensor ........... 78 
Figure 3.17 Tent transmission coefficient and coefficient of forward scattering 

by the tent walls ............................................................................................ 79 
Figure 3.18 Measured and modelled fraction of diffuse light outside and inside 

the tent ......................................................................................................... 80 
Figure 3.19 Modelled diurnal variation in the fraction of diffuse light outside 

the tent, inside the tent at the light sensor and the tent average ...................... 81 
Figure 3.20 Comparison of net fluxes from the Quarrion and Matong crops 

measured by tents ......................................................................................... 83 
Figure 3.21 Comparison of net fluxes from the Quarrion and Matong crops 

measured by the Bowen ratio systems ........................................................... 84 

xi 



Figure 3.22 Comparison of gross photosynthesis and transpiration from the 
Quarrion and Matong crops measured by tents .............................................. 85 

Figure 3.23 Comparison of gross photosynthesis and transpiration from the 
Quarrion and Matong crops measured by the Bowen ratio systems ................ 86 

Figure 3.24 Comparison of conductance at the leaf and canopy scales ...................... 87 
Figure 3.25 Energy balance of the Matong and Quarrion crops ................................ 88 
Figure 3.26 Comparison of photosynthesis at the leaf and canopy scales .................. 90 
Figure 3.27 Comparison of transpiration efficiency at the leaf and canopy scales ...... 92 
Figure 3.28 Cumulative crop water-use in 1989 .....................................................•. 93 
Figure 3.29 Cumulative crop water-use in 1990 ....................................................... 93 

CHAPTER FOUR: Modelling Stomatal Conductance ............................................... 99 

Figure 4.1 Component interactions of stomatal regulation of photosynthesis, 
transpiration and the leaf energy balance ........................................................ 109 

Figure 4.2 Variation in g, A, E andp/p0 as a function of D, measured with a 
laboratory gas exchange system ..................................................................... 116 

Figure 4.3 Variation of A with g caused by changes in D, from laboratory 
measurements .......... ; ..................................................................................... 117 

Figure 4.4 Diurnal variation of g, A, p/p
0 

and Din the field, on 25-0ct and 30-
0ct ................................................................................................................ l 19 

Figure 4.5 Response of stomatal conductance measured in the field to D ................. 120 
Figure 4.6 Variation of A. calculated from the linear form and full aEtaA model 

models of conductance .................................................................................. 125 
Figure 4.7 Values of aEtaA calculated using the leaf transpiration, energy 

balance and photosynthesis models ................................................................ 126 
Figure 4.8 Modelled stomatal response to C02 concentration .................................. 127 

CHAPTER FIVE: Scaling Conductance and Transpiration ....................................... 137 

Figure 5 .1 Calculated gab and atmospheric stability corrections ............................... 151 
Figure 5.2 Discrepancies between g0 H and the surface temperature 

measurements ................................................................................................ 153 
Figure 5.3 Canopy conductance plotted against the BBL stomatal model index ........ 154 
Figure 5.4 Comparison of modelled canopy conductance with measured 

canopy conductance ...................................................................................... 156 
Figure 5 .5 Comparison of surface conductance calculated from the tent 

measurements of evaporation with the model predictions of canopy 
conductance .................................................................................................. 158 

Figure 5.6 Comparison of surface conductance calculated from the Bowen ratio 
measurements and the model predictions of canopy conductance ................... 159 

Figure 5. 7 Comparison of canopy evaporation measured with the tents and 
modelled evaporation .................................................................................... 161 

Figure 5.8 Comparison of evaporation measured with the Bowen ratio system 
and modelled canopy evaporation .................................................................. 162 

Figure 5.9 Comparison of measured Ee with Eeq' Dr with D
0 

and W for the 25-
0ct and 30-0ct ............................................................................................. 164 

xii 



CHAPTER SIX: Models of Canopy Photosynthesis ................................................. 175 

Figure 6.1 Temperature dependence of leaf photosynthesis parameters .................... 187 
Figure 6.2 Light saturation point of leaf photosynthesis ........................................... 189 
Figure 6.3 Diffuse light penetration in a canopy ....................................................... 198 
Figure 6.4 Variation of the extinction coefficient of diffuse light under a clear 

sky ................................................................................................... " ............. 199 
Figure 6.5 Incident light profiles in a canopy ............................................................ 203 
Figure 6.6 Light penetration through a canopy of uniform leaf-angle 

distribution .................................................................................................... 206 
Figure 6. 7 Absorbed light profiles in a canopy ......................................................... 207 
Figure 6.8 Diurnal variation of light absorbed by a canopy ....................................... 214 
Figure 6.9 Diurnal variation of the photosynthetic capacity of the sunlit and 

shaded fractions of a canopy ......................................................................... 216 
Figure 6.10 Distribution of the instantaneous average and daily average light 

absorbed by leaves in a canopy ...................................................................... 218 
Figure 6.11 The instantaneous distribution of light absorbed by sunlit and 

· shaded leaves in a canopy .............................................................................. 219 
Figure 6.12 Actual distribution of leaf photosynthetic capacity and modelled 

optimal distributions with different assumptions of light conditions ................ 222 
Figure 6.13 Comparison of model predictions of canopy photosynthesis 

response to absorbed light.. ........................................................................... 223 
Figure 6.14 Error in the Big-Leaf model predictions of photosynthesis 

compared with the multi-layer model predictions with changing canopy 
leaf area and leaf photosynthetic capacity ...................................................... 225 

Figure 6.15 Variation of co-limitation of canopy photosynthesis with leaf area 
index ............................................................................................................. 225 

Figure 6.16 Light response of gross canopy photosynthesis measured with the 
tent compared with predictions from the sun/shade and multi-layered 
models of canopy photosynthesis .................................................................. 226 

CHAPTER SEVEN: Scaling Photosynthesis ............................................................ 229 

Figure 7.1 Seasonal variation of the profile of daily absorbed light ........................... 237 
Figure 7 .2 Seasonal variation of the extinction coefficient of daily absorbed 

light·············································································································· 238 
Figure 7.3 Seasonal changes in the daily absorbed light extinction coefficient.. ......... 239 
Figure 7.4 Distribution of leaf nitrogen in two wheat canopies ................................. 243 
Figure 7.5 Correlation of the canopy profiles of leaf nitrogen and daily 

absorbed light ............................................................................................... 244 
Figure 7 .6 Diurnal variation in measured soil respiration .......................................... 245 
Figure 7.7 Temperature response of canopy respiration ........................................... 247 
Figure 7 .8 Measured and modelled diurnal variation of canopy respiration ............... 248 
Figure 7. 9 Diurnal variation of leaf photosynthesis ................................................... 249 
Figure 7 .10 Photosynthetic capacity of leaves assuming Rubisco-limited 

photosynthesis or RuBP regeneration-limited photosynthesis ......................... 250 
Figure 7 .11 Seasonal variation of measured Rubisco capacity of leaves .................... 251 

xiii 



Figure 7.12 Seasonal changes of canopy leaf area, air temperature and relative 
soil water availability ..................................................................................... 252 

Figure 7 .13 Photosynthetic Rubisco capacity of the Matong and Quarrion 
canopies ........................................................................................................ 254 

Figure 7.14 Diurnal variation of gross canopy photosynthesis measured with 
the tent compared with the sun/shade canopy model ...................................... 255 

Figure 7.15 Diurnal variation of gross canopy photosynthesis measured with 
the Bowen ratio technique compared with the sun/shade canopy model ......... 256 

Figure 7 .16 Daily canopy photosynthesis integrated from flux measurements 
and model predictions ................................................................................... 258 

Figure 7 .17 Ratio of net daytime canopy photosynthesis to gross canopy 
photosynthesis ............................................................................................... 259 

Figure 7 .18 Changes of light intensity measured inside the tent caused by 
shadows of the tent frame .............................................................................. 268 

CHAPTER EIGHT: Combined models of Photosynthesis, Conductance and 
Transpiration ................................................................................................. 271 

Figure 8.1 Schematic diagram of resistances for 2-layer model of canopy 
evaporation ................................................................................................... 279 

Figure 8.2 Within canopy profiles of Q, H, 11, Ta, ea and ca for sunlit and shaded 
leaves ............................................................................................................ 288 

Figure 8.3 Within canopy profiles of A, g, E, ci, T1 and D for sunlit and shaded 
leaves ............................................................................................................ 288 

Figure 8.4 Model predictions of within-canopy profiles of Ta, wa and ca as a < 

function of z .................................................................................................. 289 
Figure 8.5 Effect of free convection on the leaf energy balance ................................ 290 
Figure 8.6 Measured and modelled canopy photosynthesis, conductance and 

transpiration ................................................................................... , ............... 291 
Figure 8.7 Modelled response of canopy photosynthesis, stomata! conductance 

and leaf temperature to air temperature ......................................................... 292 
Figure 8.8 Feedback loops of the leaf energy balance, photosynthesis, stomata! 

conductance and intercellular C02 partial pressure as implemented in the 
canopy model. ............................................................................................... 293 

Figure 8.9 Loop gains and partial differentials for the leaf energy balance, 
photosynthesis and conductance feedback loops ............................................ 295 

Figure 8.10 Components of the aerodynamic and physiological resistances and 
conductances in the Sun/Shade canopy model. .............................................. 298 

Figure 8.11 Comparison of the Sun/Shade canopy model and Multi-Layer 
canopy model. ............................................................................................... 299 

Figure 8.12 Comparison of the simple Big Leaf model and the Sun/Shade 
canopy model. ............................................................................................... 300 

Figure 8.13 Comparison of model predictions with data, using parameters 
obtained from canopy scale measurements ..................................................... 302 

Figure 8.14 Comparison of model predictions with data, using parameters 
obtained from leaf scale measurements .......................................................... 303 

xiv 



Figure 8.15 Comparison of model predictions with data, using parameters 
obtained from bulked leaf scale measurements ............................................... 304 

Figure 8.16 Effect of atmospheric C02 concentration on daily canopy fluxes of 
C02 and water vapour .................................................................................. 305 

Figure 8.17 The effect of double C02 concentration on canopy gas exchange at 
a range of leaf areas ...................................................................................... 306 

Figure 8.18 Modelled daily transpiration, gross photosynthesis and 
transpiration efficiency with varying stomata! conductance ............................ 308 

Figure 8.19 Modelled daily canopy transpiration, gross canopy photosynthesis, 
canopy transpiration efficiency and leaf transpiration efficiency with leaf 
photosynthetic capacity ................................................................................. 309 

CHAPTER NINE: Advection between Crops with Different Conductances .............. 319 

Figure 9 .1 Layout of the wheat crops and the transect ............................................. 324 
Figure 9.2 Spatial variation of air temperature, humidity and surface radiative 

temperature with the sensors travelling north and south ................................. 329 
Figure 9.3 Diurnal variation of wind speed and direction on the 12-0ct ................... 330 
Figure 9.4 Comparison of energy balance of Matong and Quarrion for 12-0ct ......... 331 
Figure 9.5 Diurnal variation of net radiation measured every six seconds ................. 332 
Figure 9.6 Transect with wind coming from a canopy of high conductance to a 

canopy of low conductance ........................................................................... 333 
Figure 9.7 Diurnal variation of wind speed and direction on the 24-0ct ................... 334 
Figure 9.8 Energy balance of the Matong and Quarrion crops on 24-0ct ................. 335 
Figure 9.9 Horizontal profiles between Matong and Quarrion crops on 24-0ct 

between 09:00-10:00 .................................................................................... 336 
Figure 9.10 Diurnal variation of wind speed and direction on the 30-0ct ................. 337 
Figure 9.11 Energy balance of Matong and Quarrion on 30-0ct .............................. 338 
Figure 9.12 Horizontal profiles between Matong and Quarrion crops on 30-0ct 

between 11:00-12:00 .................................................................................... 339 
Figure 9.13 Diurnal variation of wind speed and direction on the 18-0ct ................. 340 
Figure 9 .14 Energy balance of Matong and Quarrion on 18-0ct .............................. 341 
Figure 9 .15 Diurnal variation of net radiation at six second intervals on 18-0ct ....... 342 -' 
Figure 9 .16 Horizontal profiles on 18-0ct ............................................................... 343 

xv 



List of Tables 
Table 2.1 Composition of the nitrate-based Hewitt nutrient solution ......................... 32 

Table 4.1 Correlation coefficients for the linear regressions of g and the 
response functions of D ................................................................................. 118 

Table 4.2 Correlation coefficients for Jarvis models fitted to field data of 
stomata! conductance .................................................................................... 121 

Table 4.3 Correlation coefficients for various functions in the Ball-Berry model 
fitted to field data of stomata! conductance .................................................... 122 

Table 4.4 Regression coefficients of the preferred stomatal model fitted to each 
days field data ............................................................................................... 123 

Table 4.5 Correlation coefficients of the linear form of aE!oA model fitted to 
the field data of stomata! conductance ........................................................... 124 

Table 4.6 Regression correlation coefficients of stomata! conductance predicted 
with the full aEJaA model and field data ........................................................ 126 

Table 5.1 Regression coefficients of the stomata! model fitted to each days leaf 
data ............................................................................................................... 145 

Table 5.2 Regression coefficients of the stomata! model fitted to tent canopy 
data ............................................................................................................... 155 

Table 5.3 Regression coefficients of the stomatal model fitted to Bowen ratio 
canopy data .................................................................................................... 155 

Table 6.1 Leaf photosynthesis parameters and their activation energies .................... 186 
Table 6.2 Average cosine of leaf angle for a canopy of 1 or 5 leaf angle classes ........ 192 

Table 7 .1 Leaf size, specific leaf area and nitrogen content of leaves of cul ti vars 
Matong and Quarrion .................................................................................... 242 

Table 7 .2 Measured soil respiration .......................................................................... 246 
Table 7 .3 Measured canopy respiration ................. ~ .................................................. 24 7 
Table 7 .4 Regression coefficients of the variation of leaf Rubisco capacity ............... 253 
Table 7 .5 Sensitivity of the sunlit/shade model of canopy photosynthesis .................. 260 
Table 7 .6 Parameter uncertainty and confidence range of the sunlit/shade big 

leaf model ..................................................................................................... 261 
Table 7. 7 Atmospheric transmission coefficients ...................................................... 269 

Table 9 .1 Footprint correction weighting scheme ..................................................... 327 

xvi 



List of Symbols 

Symbol Units Eq. Description (constants at 25°C) 

A µmoI.m-2.s-1 4.2 C02 assimilation rate (subscripts: !-per unit leaf area; c-
canopy, per unit gnd area; V-Rubisco limited; I-light limited) 

Ad mol.m-2 .day-1 daytime canopy photosynthesis (subscripts g-gross; n-net) 

a 6.23 atmospheric transmission coefficient. 

al 4.2 coefficient of Ball-Berry model. 

cp J.mol-1.K-1 4.16 molar heat capacity of air at constant pressure (29.2). 

c µmol.mol- 1 4.1 C02 concentration (subscripts: a-air; i-intercellular; s-leaf 
surface). 

D m 7.8 damping depth of soil temperature oscillations, (2Ki'co)ll2 

(0.15). 

D mm2.s-I molecular diffusion coefficient in air (subscripts: v-water 
vapour (24.9); c-C02 (15.1)). 

D mmol.mol-1 4.1 leaf-to-air water vapour concentration difference. 

D1 mmol.mol-1 5.4 leaf-to-air water vapour concentration difference (Im above 
the canopy). 

Do mmol.mol-1 5.1 water vapour concentration deficit of the air at the nominal 
canopy surface. 

Dr mmol.mol-1 5.1 water vapour concentration deficit at the reference height (Im 
above the canopy). 

d m 5.6 zero plane displacement height. 

E kJ.mol-1 6.9 activation energy (subscripts: I-electron transport capacity 
(37); Kc & K

0
-Michaelis-Menten constants of Rubisco (59.4, 

36); Rc-canopy respiration (57.1); R1leaf respiration (66.4); 
Rs-soil respiration; V-Rubisco capacity (64.8)) 

E mmol.m-2.s-1 5.5 evaporation rate (subscripts: , BB-derived from the Ball-Berry 
model; c-canopy transpiration; eq-equilibrium rate; s-soil; T-
total evapotranspiration). 

Ei 6.34 exponential integral. 

Er min. 6.20 Equation of time. 

e kPa 4.15 water vapour pressure of air (subscripts: a-air; s-saturated). 

f 6.25 forward scattering coefficient (subscripts: a-atmospheric 
(0.426); w-walls of tent ()). 

f 6.26 fraction of diffuse light (subscripts; a-outside; t-tent). 

xvii 



Symbol Units 

f 
Ji 
fsun 

G 

G W.m-2 

Eq. Description (constants at 25°C) 

6.5 spectral correction factor (0.15). 

6.15 fraction of leaf area in a leaf angle class. 

6.44 fraction of leaves that are sunlit (subscript: c-canopy; l-layer; 
Sh-shaded leaves). 

6.27 leaf area orientation function. 

5 .14 ground heat flux. 

Ge mol.m-2.s-1 5.4 canopy conductance per unit ground area (subscripts: derived 

g 

g m.s-2 

from-, BB-Ball-Berry model; D-evaporation flux/gradient 
equation; PM-Penman-Monteith equation). 

6.13 distribution function of leaf area orientation. 

5.19 acceleration due to gravity (9.81) 

g mol.m-2.s-1 4.1 conductance to water vapour diffusion per unit leaf area 

gaH 

go 

H 

H 

h 

h 

mol.m-2.s-1 

mol.m-2.s-1 

kJ.mol-1 

W.m-2 

radians 

5.8 

5.1 

6.11 

4.32 

4.2 

6.17 

(subscripts: b-boundary layer of both sides of leaf; t-total 
conductance, stomatal and boundary layer). 

aerodynamic conductance to heat transfer (llr0 H). 

intercept of stomatal model regressions. 

curvature parameter of lm<TJ (220). 

sensible heat flux (subscripts:f-foliage; s-soil) 

relative humidity of the air at the leaf surface. 

hour angle of the sun l57t(t-t
0
)/180. 

l(L) µmol.m-2.s- 1 6.23 PAR (0.4-0.7 µm) photon irradiance per unit ground area 
averaged over the horizontal area at depth L (Subscripts: b­
beam; d-diffuse; t-tent; e-extra terrestrial; s-net downward 
scattered; '-including scattered light; sh-shaded; sun-sunlit). 

li(L) µmoI.m-2.s- 1 4.1 absorbed PAR per unit leaf area (subscripts: e-light effectively 
absorbed by PS II; b-beam; d-diffuse; sat-light saturation 
point of leaf photosynthesis, eq. 6.12; s-scattered; '-including 
scattered light; sh-shaded; sun-sunlit). 

J 

K 

K 

µmol.m-2.s-1 

µmol.m-2.s-1 

µmol.mol-1 

6.60 

6.3 

5.16 

4.9 

absorbed PAR per unit area of canopy (subscripts: sh-shaded; 
sun-sunlit). 

electron transport rate per unit leaf area (subscripts: m­

maximum; T-temperature; 25-25°C). 

turbulent transfer coefficient (subscripts: M-momentum). 

Michaelis-Menten constant of Rubisco (subscripts: c-C02 
(40.4); o-02 (24.8x1Q3)). 

xviii 



Symbol Units Eq. Description (constants at 25°C) 

K' µmol.mol-1 4.11 Effective Michaelis-Menten constant of carboxylation by 
Rubisco (73.8 at 25 °C). 

k 5.6 von Karman's constant (0.41). 

k 6.30 light extinction coefficient (subscripts: b-beam (0.5); d-diffuse 
(0.78); '-including scattered light (0.46)). 

k µmol.m-2.s-1 4.7 slope of the A-ci response curve. 

k µmol.m-2.s-1 6.8 rate constant (subscripts: 25-at 25 °C; T-at T °C). 

k mmol.mol-1 4.19 constant in the hyperbolic function of stomata! response to D. 

L kJ.mol-1 4.17 molar latent heat of vaporisation of water ( 44.012 at 25°C). 

L m-2.m-2 5.2 cumulative leaf area index from top of canopy (subscripts: c-
canopy leaf area index; !-leaf area of a layer; sun-sunlit; sh-
shaded). 

Le degrees 6.22 local longitude of field site (147°20.5' E). 

LM J.mol-1 5.5 molar latent heat of vaporisation of water. 

LMo m 5.19 Monin-Obukhov stability length. 

Ls degrees 6.22 standard longitude of time zone ( 150° E). 

M g.mol-1 5.7 molecular weight (subscripts: a-air= 29; w-water = 18; 
MJMa = 0.622; 1 - MJMa = 0.378). 

m 6.23 optical air mass (1.5). 

Nd µmol.m-2.sr1 6.31 diffuse photon radiance of the sky (/j.oJ/2rc). 

n 6.28 unit vector of orientation (subscripts: !-leaf). 

0 µmol.mol- 1 4.9 oxygen partial pressure (205xl03). 

p Pa 5.1 atmospheric air pressure (98.7x103). 

p Pa 4.9 C02 partial pressure (subscripts: a-air; i-intercellular). 

Q W.m-2 4.13 available energy (Rn - G) (subscripts:f-foliage; a-isothermal; 
s-soil). 

QJO 6.8 coefficient for 10° increase in temperature. 

R J.mol-1.K-1 6.9 Universal gas constant (8.314). 

R µmol.m-2.s-1 6.1 respiration per unit ground area (subscripts: c-canopy; !-leaf, 
per unit leaf area; s-soil; ( 10)-at l0°C). 

R W.m-2 4.13 absorbed radiation (subscripts: JR-infra-red; L-long-wave; n-
net radiation; V-visible). 

r s.m2.mol-1 4.10 resistance to water vapour transfer (Ilg) (subscripts: b-leaf 
boundary layer of both sides; s-stomatal). 

xix 



Symbol Units Eq. Description (constants at 25°C) 

* r bH s.m2.mol-1 4.10 combined resistance to radiative and sensible heat transfer in 
parallel. 

ra m2.s.mol-1 5.5 aerodynamic resistance (1/ga8 ) to transfer of (subscripts: H-
heat; M-momentum; V-water vapour). 

re m2.s.mol-1 5.5 canopy resistance per unit ground area (1/G) (subscripts: 
PM-derived from the Penman-Monteith equation). 

s J.K-1.mol-1 6.11 electron transport temperature response parameter (710). 

s Pa.C-1 4.13 change of saturated vapour pressure with temperature. 

T oc 4.1 temperature (subscripts: a-air; l-leaf; s,z,t-soil at depth z m 
and time, t; r-reference height; s-canopy surface). 

t day or hour 6.17 time (subscript: d-days since beginning of year; a-time of solar 
noon). 

uz m.s-1 wind speed (at height z). 

u* m.s-1 5.6 friction velocity. 

v µmol.m-2.s-1 4.9 photosynthetic Rubisco capacity (subscripts: c-canopy, per 
unit ground area; Sun-sunlit leaf fraction; Sh-shaded leaf 
fraction; l-leaf, per unit leaf area). 

w 7.9 relative soil water availapility. 

w mmol.mol-1 4.34 water vapour concentration (subscripts: a-air; i-intercellular). 

w' a mol.mol-1 4.34 saturated water vapour concentration of air. 

x 5.26 momentum stability correction function. 

z m 5.6 height above ground. 

Zo m 5.6 roughness length of surface for turbulent transfer (subscripts: 
H-heat; M-momentum). 

a radians 6.13 angle to the horizontal (subscript: l-leaf). 

~ radians 6.17 solar elevation (subscript: max- midday maximum). 

Xn mol.mo1-1.s-1 6.59 ratio of photosynthetic capacity to leaf nitrogen. 

llT oc 4.16 difference between leaf and air temperature outside boundary 
layer. 

0 radians 6.17 solar declination. 

c 4.14 long-wave radiation emissivity (subscripts: leaf-leaf (0.95); 
sky-sky (0.78)). 

4.17 change of latent content of saturated air with a change of 
sensible heat (sLM/(Cj')). 

xx 



Symbol Units Eq. Description (constants at 25°C) 

<1> stability corrections functions (subscripts: H-heat; M-
momentum). 

<1> radians 6.13 azimuth orientation (subscripts: s-sun). 

f' µmol.mol-1 4.8 C02 compensation point of photosynthesis (4.4) (subscripts: 
*-in the absence of mitochondrial respiration (3.69)). 

rd radians 6.20 day angle. 

A. mol.mol-1 4.3 a constant value of dE/dA. 

A. radians 6.17 latitude (-35°3.5'7r/180 S atWagga Wagga). 

e 4.1 relative leaf water content. 

e 6.4 light response curvature factor (subscripts: /-leaf (0.7); c-
canopy). 

p 6.38 reflection coefficient (subscripts: /-leaf (0.1 O); c-canopy; b-
beam; d-diffuse (0.036); h-horizontal leaves (0.04)). 

Pa kg.m-3 5.7 density of moist air. 

'J:,£ mol.day-1 7.10 daily accumulated evaporation. 

cr 6.37 scattering coefficient (p1+'t1=0.15). 

cr W.m-2.K-4 4.14 Stefan-Boltzmann constant (5.67xI0-8). 

't kg.m-1.s-2 surface shearing stress~ 

't1 leaf transmissivity of radiation (0.05). 

'tp s 7.8 period of temperature oscillation in soil (86400) 

n canopy-atmosphere decoupling coefficient. 

(I) s-1 7.8 angular frequency of temperature oscillation (27r/86400). 

'I' 5.6 atmospheric stability integral (subscripts: H-heat; M-
momentum; V-water vapour). 

5.6 ratio of reference height to the stability length (z!LM0). 

xxi 





CHAPTER ONE: 

GENERAL INTRODUCTION 



Chapter One 

Chapter Contents 
1.1. Introduction ........................................................................................ 3 

1.1.1. Overview ............................................................................... 3 
1.1.2. Modelling: A tool for scaling ................................................. .4 

1.2. Water-Use ........................................................................................... 7 
1.2.1. l..eaf Transpiration .................................................................. 7 

1.2.1.1. Stomatal Conductance ............................................. 8 
1.2.2. Canopy Evaporation ............................................................... 9 

1.2.2.1. Soil Evaporation ...................................................... 11 
1.2.3. Scaling Conductance and Evaporation .................................... 12 

1.3. Carbon Dioxide Fluxes ....................................................................... 14 
1. 3 .1. I...eaf Photosynthesis ................................................................ 14 

1.3.1.1. I...eaf Respiration ....................................................... 15 
1.3 .2. Canopy C02 Fluxes ................................................................ 15 

1.3.2.1. Canopy Photosynthesis ............................................. 16 
1.3.2.2. Canopy Respiration .................................................. 19 

1.4. Water-Use Efficiency .......................................................................... 21 
1.4.1. Instantaneous Transpiration Efficiency .................................... 21 
1.4.2. Carbon-Isotope Discrimination ............................................... 22 
1.4.3. Scaling Water-Use Efficiency ................................................. 23 

1.5. Advection ............................................................................................ 25 
1.6. Thesis Hypothesis and Outline .......................................................... 27 

2 



General Introduction 

1.1. Introduction 

1.1.1. Overview 

Plants use carbon dioxide (C02) from the atmosphere to build sugar molecules, in the 

process known as photosynthesis, which they ultimately use for growth and metabolism. 

Allowing enzymes of photosynthesis access to atmospheric C02 results in loss of water. 

If unabated, this loss of water can lead to desiccation and often death of plants. Higher 

plants have evolved over at least 400 millions of years to cope with this trade-off 

between water loss and C02 uptake (Thomas & Spicer, 1987). Physiologically they have 

developed vascular root systems, and waxy cuticles on aerially exposed surf aces with 

pores, called stomata, which regulate the exchange of gases between the inter-cellular 

space and the surrounding air. At the whole plant level, various growth and 

development strategies have evolved to cope with periodic drought. The competing 

objectives of carbon uptake while avoiding desiccation by plants have many implications 

for our immediate world through both climate regulation and food production. 

. Plants are grown for food with often limited water supplies from either rain or 

irrigation. Better use of this limited resource may enhance food production, particularly 

in drier regions where food is most needed. Improved varieties of many major food 

crops are continually being released, with better traits and yields. Efficient utilisation of 

soil water supplies is one characteristic that has not been extensively exploited by plant 

breeders, primarily because water-use measurements in conjunction with yield 

measurements are difficult to make on a routine basis (Richards & Condon, 1993). 

A promising alternative approach to direct water-use measurements, is through the 

use of carbon isotope discrimination (.1) (Farquhar et al., 1982), which has been shown 

to be negatively correlated with water-use efficiency of plants grown in pots (Farquhar & 

Richards, 1984). However, this relationship does not necessarily translate into a 

correlation with yield in the field. At larger spatial scales it is possible that interactions 

between the atmosphere and the vegetation, due to the canopy boundary layer, may 

reduce or even reverse any advantage from more efficient water-use (Cowan, 1988). 

To explore the scaling up of water-use efficiency and the interactions between 

canopies and the atmosphere, a multi-disciplinary research project was established with 

two large paddocks of wheat with cultivars of contrasting water-use efficiency. 
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Intensive physical and physiological measurements were made of the canopies, 

atmosphere and soil. As part of the larger project, the purpose of my work was to 

examine water-use efficiency at different spatial scales and the interactions with the 

atmosphere. This involved developing canopy models that incorporated the leaf level 

physiological processes of photosynthesis and water-use. This scaling of physiological 

processes from leaves to canopies also has implications for scaling physiological 

processes to assess global carbon cycling and its role in the mitigation of increasing 

atmospheric C02 concentration. Considering the global implications of this work, the 

modelling has been kept as simple as possible so that it may be used in the global 

context. 

The following sections of this introduction elaborate on the concept of water-use 

efficiency and its components of photosynthesis, water-use and interactions with the 

atmosphere. Each section details the physiological process and its modelling, firstly at 

the leaf level and then at the canopy level. Inevitably the focus switches back and forth 

between leaf and canopy levels, but it is the nature of this scaling work, that it requires 

continual assessment of detail and a broader context. Each of the topics has mostly been 

covered in great detail in specific reviews, text books and research papers; it is not the 

intention of this review to repeat them. Rather, the scope of this work is to pull together 

many different themes of research and synthesise them into a useful framework on which 

to base the scaling-up of water-use efficiency from leaves to paddocks. 

1.1.2. Modelling: A tool for scaling 

Both the relationship between carbon isotope discrimination and water-use efficiency 

and the role of vegetation in global carbon cycling involve issues of scaling, both spatially 

and temporally. Carbon isotope discrimination occurs as a result of gas exchange at the 

scale of individual leaves on an instantaneous basis, but is used as a tool to evaluate 

water-use efficiency of whole crops over periods of several months. Similarly, carbon 

and water fluxes occur at the leaf scale, but collectively affect the global carbon and 

hydrological cycles. Both issues need answers, but progress has been slow in this field of 

integrative science (Berry, 1992). 

There are several possible explanations for the dominance of the reductionist 

approach to science, including; the claimed successes of molecular biology; the difficulty 

of handling emergent properties at larger scales that can not simply be described from 
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small scale properties and interactions (Passioura, 1979); the debate of indeterminism 

versus determinism (Popper, 1982). The work presented in this thesis sets out to be 

integrative, to apply the successes of reductionism to broader issues, but in a new 

synthesis of those successes. 

In moving between scales it is important to determine which interactions are 

significant, which should be considered and which can either be ignored or taken as 

independent variables (de Wit, 1970). While the reductionist approach reduces problems 

to a few manageable variables within a controlled system, scaling-up involves the 

integration or synthesis of the interactions of many variables (Norman, 1993). It is 

difficult to keep track of all such interactions and their relevance as the scope of research 

expands. Mathematical functions can be used to describe the effects of variables and 

their interactions in a model of the system. The behaviour of components of such a 

model can be compared with experiments in manageable systems, and the entire model 

can be compared with observations at larger spatial scales where experimental 

manipulations may not always be possible. Ultimately all models are just models or a 

simplification of a more complex system; otherwise they would no longer be models but 

a replica of the system itself. So the art or science of modelling is to decide which 

components are important and need to be included and which can be omitted. 

Modelling can also serve to highlight deficiencies or gaps in the understanding of 

complex systems. In doing so, it can be used to assess the impact of individual 

components and direct future research to areas that are more likely to affect the system. 

An important principle of modelling, as a component of scaling-up (rather than just 

modelling for whatever reason), is to use simple models developed at one scale, based on 

mechanistic processes, rather than statistical, empirical or detailed integrative 

approaches, and to apply these models to larger scales to avoid numerical integration. A 

mechanistic basis to modelling has several advantages: the extensive knowledge 

developed at one spatial scale can be extended to another scale; parameters can have 

physical meanings that can be interpreted at different spatial scales; understanding and 

familiarity of a system's behaviour can be applied at different scales; a mechanistic model 

is more likely to be able to make realistic predictions with combinations of variables that 

were not previously used to develop the model, ie., altered climates, though this is not 

guaranteed, as new interactions may arise that were not previously apparent. By contrast 
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empirical or statistical models can be more accurate for particular situations, but are 

likely to break down very quickly in new situations. 

On the other hand detailed integrative models, which consider each component 

separately and numerically integrate, can be very accurate, but are computationally very 

time consuming and difficult to parameterise in the detail required (Norman, 1993; 

Raupach & Finnigan, 1988). A good model for scaling will be based on mechanistic 

processes at a lower scale, have only the interactions that are relevant at the scale 

considered, be sufficiently simple that it can be used as a basis for further scaling, while 

still adequately describing the system with tangible parameters (Baldocchi, 1991). 

While both spatial and temporal scaling are important, the focus of this thesis is on 

the spatial aspects. Temporal scaling, involving plant and crop growth is another 

important aspect, which is only considered in passing, not in detail. Agronomic aspects 

were covered by others involved in the project (Condon & Richards, 1993). The 

remainder of the introduction considers, in tum, regulation of water use and 

photosynthesis by plants, their scaling from leaves to canopies, water-use efficiency at 

leaf and canopy scales and the effect of vegetation-atmosphere interactions. 
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1.2. Water-Use 

Water-use by vegetation can be considered at many different spatial and temporal 

scales: from the molecular perspective; as gas exchange from leaves and canopies; as 

crop water-use by agronomists; and in water catchment studies by hydrologists. This 

introduction will only consider water-use as a gas exchange process at the level of 

individual leaves and canopies. Many excellent reviews are available for information on 

other aspects (eg.; Jones, 1992, reviews physical aspects at the molecular level; 

Brutsaert, 1982, reviews the process of evaporation in to the atmosphere and; Stewart & 

Nielsen, 1990, review evaporation measurement methods). 

Evaporation from leaves is known as transpiration. When combined with 

evaporation direct from the soil it has been called evapotranspiration or more simply 

total evaporation. In the following sections, leaf transpiration is first considered and then 

a description of canopy level transpiration and soil evaporation. 

1.2.1. Leaf Transpiration 

Water loss from plants involves water moving down a water potential gradient from 

the soil, through roots, stems, leaves and boundary layer to the free air. At each step 

there is a gradient of water potential and some resistance to flow. The largest gradient 

occurs between the leaf and the atmosphere, where plants have developed specialised 

regulating structures, stomata. By conservation of mass and assuming no change in 

water content, the flow of water through plants must be equal at all points between the 

soil and the air. Plants exert the greatest control over water use at stomata on leaves, 

and this is often used as the point of measurement. 

Gas exchange measurements on leaves use the diffusion equation to interpret 

transpiration in terms of a water vapour concentration difference and resistances (or 

conductances) across the stomata and leaf boundary layer. Use of the electrical 

resistance analogy, greatly simplifies the complex interactions between molecules of 

water vapour, C02, air and the walls of the stomatal opening (Cowan, 1977). However, 

at small stomata} apertures these interactions may not be adequately described by simple 

diffusion equations (Jarman, 1974; Leuning, 1983). 

The leaf-to-air concentration gradient is determined from the humidity of the ambient 

air and the vapour concentration of the intercellular air spaces, which is assumed to be 
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the saturated vapour concentration at the measured leaf temperature. Leaf conductance 

is defined as the transpiration rate divided by the leaf-to-air vapour concentration 

gradient. It consists of both stomatal and boundary layer components. The boundary 

layer is the layer of air adjacent to the leaf that is modified by the leaf and its limit is 

commonly defined as the point at which the properties of the air are 99% of the values in 

ambient air. In the boundary layer wind speed, air temperature, humidity and C02 

concentration are changed relative to the ambient air. 

Leaf boundary layer resistance can be measured in gas exchange equipment by using 

leaf replicas made of wet filter paper, equivalent to a stomatal resistance of zero. More 

general relationships between leaf boundary layer resistance and leaf dimensions and 

wind speed have been established from metal leaf replicas that are heated electrically and 

their cooling rate measured (Bird et al., 1960; Monteith, 1973; Grace, 1977). Despite 

extensive engineering analysis, models of boundary layer resistance do not accurately 

account for resistances over real leaves, where turbulence regimes are neither completely 

laminar or fully turbulent (Denmead, 1976), nor are leaf temperatures uniform, and the 

presence of leaf hairs and leaf curling further complicate matters. In practice, these 

models give leaf boundary layer conductances th~t are only about 2/ 3 of those that are 

applicable for leaves in canopies (Jones, 1992). 

1.2.1.1. Stomatal Conductance 

The regulatory role of stomata results in their aperture responding to the 

environment in a complex manner (for recent reviews see; Zeiger et al., 1987; Mansfield 

et al., 1990; Grantz, 1990). Mechanistic models of stomata} behaviour have been too 

complex to be of use on a routine basis (eg.; Penning de Vries, 1972). Instead, stomatal 

behaviour has been successfully modelled empirically by a series of response functions to 

individual variables developed in controlled environments as proposed by Jarvis (1976). 

While the Jarvis stomatal model has been successfully applied to many data sets, there is 

often a considerable amount of unexplained variation in stomatal conductance (eg.; Kim 

& Verma, 1991b). Another modelling approach has been to consider the optimization of 

carbon gain with respect to water-use (Cowan, 1977; Cowan & Farquhar, 1977). This 

teleological approach, while very attractive for explanation of stomatal behaviour, has no 

mechanistic basis and further is not easily used for predictive purposes (Cowan, 1986). 

The observed correlation between stomata} conductance and leaf photosynthesis 0N ong 

et al., 1979) has been the basis for other stomatal models first proposed by Ball et al., 
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(1987) and subsequently modified by others (Collatz et al., 1991; Leuning, 1990; 1995). 

While this latter type of model is not mechanistic in the strict sense; it does take into 

account the duality of stomatal behaviour in regulating both water loss and C02 

diffusion. 

Most of these stomatal models have been developed from data sets obtained in 

controlled environments. Comparison of the models with field data may suggest which 

approaches are more successful. 

1.2.2. Canopy Evaporation 

The above discussion of leaf transpiration is based on measurements in gas exchange 

systems. These systems usually involve enclosing the leaf in a well ventilated chamber, at 

an imposed temperature and humidity. In such systems the leaf boundary layer 

conductance is large and the transpiration rate has little effect on the conditions. 

However, leaves in the real world are often less well ventilated so that boundary layers 

have a significant effect on the transpiration rate. The air within the boundary layer is 

humidified and the leaf temperature departs from air temperature, e~ther increasing or 

decreasing depending on the leaf energy balance, causing the vapour concentration 

gradient to change. It is apparent that in the real world transpiration is affected by both 

stomatal and boundary layer conductances. 

Another perspective on transpiration is that it involves two processes: the phase 

change from liquid water to vapour; and diffusion of water vapour away from the 

evaporating surface. The first process, conversion from liquid to vapour, requires 

considerable energy known as the latent heat of vaporisation (44 kJ.mol-1). This energy 

component of transpiration implicates the leaf energy balance as an integral part of 

transpiration. Through the leaf energy balance, stomata play a significant role in the 

partitioning of the energy of incident radiation into either sensible or latent heat. 

The presence of the boundary layer reduces the transpiration rate in comparison to 

the rate that would be obtained if there were no boundary layer. In effect the boundary 

layer provides a negative feedback for transpiration, so that if stomata open 

incrementally, humidification of the air adjacent to the leaf and cooling of the leaf reduce 

the effect this change in stomatal conductance has on transpiration. As the scale of 

observation of transpiration increases from a single stoma to individual leaves, to 

canopies, to extensive regions, this feedback becomes more pronounced (Jarvis & 
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McNaughton, 1986). This only occurs if the change in stomatal conductance is uniform. 

The feedback through the effect of the boundary layer does not occur if the change is 

isolated to an individual. 

While transpiration from isolated leaves can be adequately described by the diffusion 

expression, since leaf temperature is usually measured, transpiration from leaves in 

canopies requires consideration of both diffusion and the leaf energy balance. The dual 

processes of vaporisation and diffusion were first considered in an evaporation model by 

Penman (1948) and Penman & Schofield (1953). Their work was extended to include 

evaporation from vegetation by incorporation of a canopy conductance, in what became 

known as a big leaf model (Monteith, 1963; 1965; Thom, 1972). The Penman-Monteith 

model has been extensively used to describe evaporation from many different vegetated 

surfaces (Black et al., 1989), despite the approximations involved (Finnigan & Raupach, 

1987; McNaughton & Van den Hurk, 1995; Raupach, 1995). Subsequent modification 

led to the now widely used. Penman-Monteith equation (Monteith, 1963; Thom, 1972; 

Cowan, 1977). 

Multi-layer models of canopy transpiration have been developed (Cowan, 1968b; 

Shuttleworth, 1976; Lhomme, 1988), but there are difficulties in describing within­

canopy turbulent transport. Many models have used K-theory, which assumes that 

turbulent transport is analogous to molecular diffusion in that fluxes occur along 

concentration gradients. Observations of counter-gradient fluxes within canopies have 

shown that K-theory doesn't work in canopies where fluxes are dominated by infrequent 

gusts of wind (Denmead & Bradley, 1985). Alternative theories of turbulent transport, 

which rely on higher-order closure (Meyers & Paw U, 1987b; Meyers & Paw U, 1987a; 

Paw U & Meyers, 1989) or Lagrangian schemes (Raupach, 1989), are being developed 

to more accurately describe the turbulence and concentration profiles, but their 

complexity remains a limitation to their use on a routine basis (Raupach & Finnigan, 

1988). Comparisons of models using K-theory with those using the more physically 

realistic Lagrangian models of canopy turbulence have shown that errors from use of K­

theory are negligible in practice in sparse canopies (Dolman & Wallace, 1991) and that 

use of resistances based on K-theory in a 2 layer model of soil and canopy evaporation 

are adequate (McNaughton & Van den Hurk, 1995; Van den Hurk & McNaughton, 

1995). Definitive comparisons of predictions from K-theory with Lagrangian models 

have not been conducted, so despite the known flaws of K-theory in some situations it is 

still often used in practice. 
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1.2.2.1. Soil Evaporation 

Water loss by canopies arises from both transpiration and evaporation direct from the 

soil. The soil component of evaporation is not under direct plant control, but is affected 

indirectly by the quantity of radiation that penetrates through the canopy to the soil 

surface. Soil evaporation also depends on many other factors, including: canopy leaf 

area, radiation penetration through the canopy, wetness of the soil surface, hydraulic 

conductivity of the soil and wind speed beneath the canopy. 

When the soil surface is mosit, soil evaporation can be considered to be dependent on 

the available energy (Black et al., 1970; Ritchie, 1972) and the surface mositure is 

replenished from soil water further down the profile. Evaporation continues in this 

manner as long as there is sufficient soil water and it can move to the surface fast enough 

to maintain the surface as mosit. When the supply of water from below is not sufficient 

the surface dries out, so that the point of evaporation moves deeper into the soil. This 

surface layer of dry soil offers further impedance to the diffusion of water vapour into 

the atmosphere, reducing the evaporation rate. The net result is that the rate of soil 

evaporation is rapid while the surface is wet and then declines as the surface dries. 

Although some aspects of the physics of soil evaporation are fairly well understood, 

the complex and heterogeneous nature of soil has made it difficult to develop mechanistic 

models that can be used to predict bare soil evaporation (see recent review by; Jalota & 

Prihar, 1990). Presence of canopies over the soil adds even more difficulty to modelling 

evaporation from soil. Even obtaining separate measurements of soil evaporation and 

canopy transpiration is not easy. 

Measurements of soil evaporation from beneath canopies have been achieved using 

mini-lysimeters (eg.; Leuning et al., 1994). This approach is very labour intensive to get 

sufficient replicates and does not give temporal resolution better than daily soil 

evaporation. Simple estimates of soil evaporation can be obtained using the method of 

Cooper et al. (1983). This involves adjusting bare soil evaporation measurements by the 

radiation penetration through the canopy. Although crude this method is widely used by 

agronomists. 

Canopies with complete or nearly complete cover, intercept most of the radiation so 

that soil evaporation is likely to be a small component of the total evaporation. If rain is 

infrequent and the soil surface dry then soil evaporation is often assumed to be 

insignificant and ignored. In canopies with intermediate levels of ground cover, simple 
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models are used to predict soil evaporation (eg.; Black et al., 1970; Ritchie, 1972), 

which is added to canopy transpiration do obtain total evaporation. When soil 

evaporation is a larger component of total evaporation, in sparse canopies, it has been 

included in two-layer evaporation models (Shuttleworth & Wallace, 1985), although, 

realistic parameterisation of these models is difficult. 

1.2.3. Scaling Conductance and Evaporation 

Scaling conductance and evaporation from leaves to canopies has received 

considerable attention recently in recognition of the importance of the energy balance at 

the land-atmosphere interface in determining climate and its representation in general 

circulation models (Carlson, 1991; Ehleringer & Field, 1993). Several recent reviews 

have laid excellent groundwork for research into the scaling of conductance (Baldocchi, 

1991; Baldocchi, 1993; Kelliher et al., 1995). Actual experiments to test scaling 

principles, with data at both leaf and canopy· levels as well as canopy leaf area, are far 

scarcer than discussion in the literature would suggest. 

Much of the early field work with porometers was confounded by systematic biases 

in non-ventilated diffusion porometers (Komer et al., 1978), incorrect interpretation of 

data from viscous flow porometers and lack of attention to variation of stomata! 

conductance within canopies. Spot measurements of stomata! conductance in canopies 

have often been assumed to apply to all leaves in a canopy (eg.; Monteith, 1965). In 

several experiments, it was probably fortuitous coincidence that the product of stomata! 

conductance by canopy leaf area matched the canopy conductance derived from the 

inverted Penman-Monteith equation. 

In a comparison of scaling methods, Rochette ( 1991) found that simple scaling 

techniques such as multiplying by the canopy leaf area overestimated canopy 

conductance. Separate consideration of the conductance of sunlit and shaded leaves and 

their leaf area improved the scaling to the canopy, but use of a light penetration model 

and the leaf angle distribution was the best approach to scaling conductance from leaves 

to canopies. In another study, Kim & Verma (199lb) used leaf measurements to 

parameterise a model of stomatal conductance and found that driving the model with the 

average light of the sunlit and shaded fractions and weighting by the respective leaf areas 

gave good agreement with the canopy conductance under well-watered conditions, but 

overestimated canopy conductance under water-limiting conditions, since soil water 
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content was not used as a parameter. A companion paper (Kim & Verma, 1991a) 

showed that utilising the correlation between stomata! conductance and photosynthesis 

(Wong et al., 1979) substantially improved the scaling of conductance from leaves to 

canopies under the water limiting conditions. This suggests that the stomatal model of 

Ball et al. ( 1987), which is based on the correlation between conductance and 

photosynthesis, may be a useful tool in the scaling of conductance. 
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1.3. Carbon Dioxide Fluxes 

Carbon accumulation in vegetation involves exchange of carbon with both the 

atmosphere and the soil. Carbon is fixed in green parts of plants (predominantly leaves) 

from atmospheric C02 by photosynthesis during the day. Metabolic processes in all 

plant parts continue both day and night releasing C02 back to the atmosphere. C02 

fluxes also occur from the soil as a result of microbial activity and root respiration. Each 

of these components are considered separately at both the leaf and canopy scale. 

1.3.1. Leaf Photosynthesis 

Photosynthesis is the dynamic process of C02 fixation into sugar molecules that is 

driven by energy from absorbed light. The rate of photosynthesis varies in response to 

both environmental and biotic factors. Many experiments have shown the non-linear 

response of photosynthesis to light, C02 concentration, temperature. The rate of 

photosynthesis also varies with plant nutrition, leaf age, growth environment and 

between species (see reviews; Berry & Bjorkman, 1980; Bjorkman, 1981). 

Many mathematical models have been used to describe leaf photosynthesis, that vary 

in form depending on the application. Several empirical equations have been used to 

describe observations of the response of leaf photosynthesis to light, C02 concentration 

and temperature with varying degrees of success (see review in Chapter 4 of; Thomley, 

1976). Ease of mathematical manipulation and integration are often criteria in choice of 

models. Empirical models are often adequate for interpretation or analysis of 

observations, but are of limited use for predictive purposes because their empirical nature 

limits the biological interpretation of the parameters. 

Another approach has been to consider the biochemistry of the photosynthetic 

process and model the rate limiting steps (Farquhar et al., 1980). This model considers 

photosynthesis to be either Rubisco (ribulose bisphosphate carboxylase/oxygenase) 

limited or RuBP (ribulose bisphosphate) regeneration limited. The Rubisco-limited rate 

is described by Michaelis-Menten type reactions of C02 and 0 2 with RuBP and Rubisco; 

while RuBP regeneration is described by light driven electron transport (for more details 

see; Farquhar & von Caemmerer, 1982; Woodrow & Berry, 1988; von Caemmerer et 

al., 1994). The apparent complexity of these models is simplified by the fact that many 

of the parameters do not vary between plants, but are in fact common features of 
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Rubisco found in all plants. This model has been validated by many experiments (von 

Caemmerer & Farquhar, 1981; Brooks & Farquhar, 1985; Kirschbaum & Farquhar, 

1984) and is now widely accepted. Successful application of this photosynthesis model 

requires coupling with a stomatal diffusion model and a leaf energy balance. 

1.3.1.1. Leaf Respiration 

Respiration is the C02 release from mitochondria by the oxidation of carbohydrate. 

During daylight C02 released by respiration can be refixed by photosynthesis, so that 

respiration of photosynthetic tissues in the light is difficult to determine. Gas exchange 

of leaves in the dark measures respiration since no photosynthesis occurs. It has been 

argued that, in the light, ATP reduction is driven directly by electron transport and does 

not require oxidative phosphorylation, thus reducing leaf respiration in the light 

(Graham, 1980). Experiments to confirm this all have deficiencies, but it seems likely 

that leaf respiration is reduced in the light (Brooks & Farquhar, 1985; Kirschbaum & 

Farquhar, 1987; Amthor, 1989; Kromer, 1995); however see (Azc6n-Bieto & Osmond, 

1983). 

Respiration is related to the metabolic activity of the tissue, ~o that growing tissues 

have much higher specific respiration rates than mature tissues (Amthor, 1989). 

Respiration rates of expanded leaves have been related to leaf nitrogen content (Hirose 

& Werger, 1987b), which is often incorporated into models so that leaf respiration is 

proportional to leaf photosynthetic capacity (Farquhar et al., 1980; Collatz et al., 1991 ). 

More detailed analysis of leaf respiration is not warranted since in the context of the 

carbon budget of the canopy, leaf respiration is relatively unimportant as leaves comprise 

only a small proportion of the canopy biomass (Amthor, 1989). 

1.3.2. Canopy C02 Fluxes 

Canopy carbon gain consists of carbon uptake by photosynthesis in leaves and 

respiratory losses from leaves, stems, roots and developing grain if present. There is a 

C02 flux from the soil, derived from root and microbial respiration. 

Several techniques are available for measuring net C02 from canopies, utilising both 

chambers or micrometeorological approaches. Several recent reviews have described 

chamber techniques for leaf (Field & Mooney, 1990) and canopy C02 flux measurements 

(Reicosky, 1990; Garcia et al., 1990). Several comparisons of chambers with other flux 
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measurement techniques have demonstrated that despite the problems of the altered 

environment inside chambers they can be a useful measurement technique (Reicosky et 

al., 1983; Dunin et al., 1989b; Dugas et al., 1991; Pickering et al., 1993). Comparisons 

of rnicrometeorological techniques (Bowen ratio and eddy correlation) and lysimeters 

have shown that each of these also have limitations (Held et al., 1990; Dugas et al., 

1991; Valentini et al., 1991). Recent reviews have summarised the advantages and 

disadvantages of each of the techniques (Wesely et al., 1989; Denmead & Raupach, 

1993). 

1.3.2.1. Canopy Photosynthesis 

Canopy photosynthesis is the combined C02 uptake by all the leaves in a canopy. 

The canopy is a highly heterogeneous environment with light intensity varying from 0 to 

110 % of the incident light above the canopy, caused by shading and scattering of light 

by other leaves. 

Canopy Structure 

The structure of plant canopies is determined by the distribution and orientation of 

leaves. The horizontal distribution of leaves is affected by the distance between 

individual plants, so that, for example, the leaves of row crops have a very non-uniform 

distribution. It is also affected by the individual plant structure, or branching pattern, so 

that some plants have highly clumped leaves, while others tend to more uniformly 

distributed leaves. Analysis and modelling of the horizontal distribution of leaves is very 

complex and will not be considered further here (for more details see; Ross, 1981). 

Research in this thesis has been restricted to canopies that can be considered 

homogeneous in their horizontal distribution of leaves. 

Vertical distribution of leaves is also highly complex; however less research has been 

done in this field. High plant density and competition between plants for light results in 

an accumulation of leaves towards the top of a canopy and less leaves towards the 

bottom. New leaves are placed in positions of high light in the canopy (Field, 1981) and 

leaves in low light at the bottom of the canopy are the first to senesce. These vertical 

distributions are generally not explicitly described in models, but rather included 

implicitly by using the cumulative leaf area from the top of the canopy as the basis for 

describing position in the canopy. Cumulative leaf area is a more useful descriptor of 
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position than height since it is the light environment that produces most variation within 

the canopy and the light varies as a function of cumulative leaf area. 

Orientation of leaves is considered in both horizontal (leaf azimuth) and vertical (leaf 

angle) aspects. Leaf orientation strongly affects both light absorption by individual 

leaves and light penetration in the canopy. The azimuthal distribution of leaves in many 

canopies is near to uniform, so that this component can be ignored. Leaf angle 

distributions vary widely and are often an adaptive strategy to optimize light absorption 

or avoid temperature stress (either heat or cold). They can be vertical, horizontal, a 

fixed angle in between, uniform or ellipsoidal. Wheat and many other crop canopies 

have leaf angle distributions that are close to uniform (Ross & Nilson, 1967), although 

there is tendency for leaf angle to be more horizontal deeper in the canopy and more 

vertical towards the top (Denmead, 1976). A uniform leaf angle distribution means that 

equal leaf area is oriented to all leaf angles, including both vertical and azimuth. This has 

also been called a spherical leaf angle distribution, because the leaves can be rearranged 

to form the surf ace of a sphere while maintaining their original orientations. This type of 

distribution means that the light intensity on the leaves is independent of the direction of 

the light ie. the solar position, although solar position does affect the penetration of light 

through the canopy. 

Radiation Penetration and Absorption in Canopies 

Radiation entering canopies is either direct beam from the sun or diffuse from the sky 

and clouds. Beam and diffuse radiation penetrate canopies differently because of the 

angle at which they enter the canopy. Radiation penetration through the canopy is 

affected by the projection of the leaves in the direction of the radiation source, which is 

determined by the leaf-angle distribution. In addition radiation is scattered by the leaves 

further complicating radiation penetration in canopies. Scattered radiation arises from 

either reflection or transmission through the leaves. These optical properties of leaves 

vary greatly with the wavelength, so that photosynthetically-active radiation (PAR, 0.4-

0.7 µm) and near infra-red radiation (NIR, 0.7-3.0 µm) penetration and absorption are 

considered separately. 

Early work by Monsi and Saeki (1953) showed that light penetration in canopies 

could be described by Bouguer's law, as an exponential decrease with cumulative leaf 

area from the top of the canopy. Much theoretical and experimental work has been done 

on light penetration for all types of canopies (see; Ross, 1975; 1981; Goudriaan, 1977). 
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While the average irradiance decreases down the canopy, consideration of sunflecks 

and shaded leaves mean that the instantaneous distribution of light is different to the 

average irradiance. For example, leaves in sunflecks at both the top and the bottom of 

the canopy receive the maximum irradiance, though there are more sunflecks near the 

top than at the bottom. Similarly there are shaded leaves both near the top and the 

bottom of the canopy, which will receive only diffuse light. Thus while the average 

penetration of light follows Bouguer's law, the actual distribution of irradiance is more 

binomial, either sunfleck or shaded. 

Distribution of Photosynthetic Capacity in Canopies 

Not all leaves in a canopy are the same. New leaves emerge in high light positions at 

the top of the canopy. In wheat canopies this results in a gradient of leaf age down 

through the canopy. As leaves age their photosynthetic capacity decreases and leaf 

nitrogen is remobilised from shaded leaves to leaves in high light positions. Together 

these phenomena cause leaf photosynthetic capacity to be highest at the top of the 

canopy and decrease towards the bottom. 

Models of Canopy Photosynthesis 

From the above description it can be seen that canopies are highly heterogeneous in 

both the radiation environment and leaf physiological properties. As well, photosynthesis 

and transpiration modify the air within canopies, so that gradients of temperature, C02 

concentration and humidity are created. These gradients are usually much smaller than 

the variation of radiation and physiological properties that exist in canopies (Sinclair et 

al., 1976). Each leaf in a canopy responds to its local environment. Thus by coupling a 

leaf photosynthesis model with models of radiation penetration and transport processes 

within the canopy, the flux from each leaf can be determined and then all leaves summed 

to give canopy photosynthesis. Such models are known as multi-layer models and have 

been successfully used to describe canopy photosynthesis (de Wit, 1965; Duncan et al., 

1967; Lemon et al., 1971; Norman, 1979). Multi-layered models allow detailed analysis 

of sources and sinks of fluxes within the canopy, but also require considerable 

parameterisation to accurately reflect real canopies. 

An alternative approach to scaling photosynthesis from leaves to canopies is to treat 

the canopy as though it were a single big leaf, with properties that match the bulk canopy 

properties. These models are known as 'big leaf models. They have the advantage of 
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being much simpler to parameterise with far fewer calculations, which makes them 

attractive for embedding in models of larger scale processes such as crop growth or 

global carbon cycling. The main disadvantage of big leaf models is the errors introduced 

in deriving the bulk canopy properties (Sinclair et al., 1976; Norman, 1980). In 

particular, the averaging of the gradients of light and photosynthetic capacity can 

introduce significant errors because of the non-linear response of photosynthesis to light 

(Smolander, 1984). Despite these limitations their simplicity is very attractive (Sellers et 

al., 1992). It remains to be demonstrated how well big leaf models of canopy 

photosynthesis can reproduce measurements and secondly how useful they are for 

prediction (Amthor, 1994). 

1.3.2.2. Canopy Respiration 

Models of canopy photosynthesis account for the gross photosynthesis of a canopy. 

Measurements of C02 fluxes from canopies provide data of net photosynthesis, ie. gross 

photosynthesis less total respiration. This respiration comes from stems, heads and roots 

as well as from soil microbial activity. In an actively growing wheat crop, from 20 to 

60% of carbon fixed during the day is re-released by respiration, depending on 

temperature and stage of growth (Evans & Rawson, 1970; Denmead, 1976; Gerbaud et 

al., 1988; McCullough & Hunt, 1993). 

Respiration in plant tissues is directly related to the metabolic activity or growth rate 

of the tissue and also to the carbohydrate status of the leaves (Azc6n-Bieto & Osmond, 

1983). Expanding leaves, new roots and developing grain are all tissues that have high 

specific respiration rates (Amthor, 1989). However, the biomass in each of these tissues 

is not very great so that their contribution to canopy respiration is not very large. 

Soil respiration has plant and microbial components. Separation of these 

components is difficult because the rhizosphere is a very microbially rich environment 

where the main carbon source is root exudates from the plant. In the absence of plants 

soil respiration is considerably lower (Monteith et al., 1964). 

Microbial degradation of soil organic matter is strongly affected by both temperature 

and moisture content (Anderson, 1982). Field observations have shown a response of 

soil respiration to both temperature and soil moisture (Hall et al., 1990; Norman et al., 

1992). Respiration from surface litter is often enhanced at night, because dew provides 
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moisture for microbial activity, but decreases during the day as the litter rapidly dries 

(Edwards & Sollins, 1973). 

Soil is a highly heterogeneous substrate, so that variability in soil respiration occurs 

at a scale smaller than 15 cm, even in a seemingly uniform field (Rochette et al., 1991). 

Part of this variability may be due to variation in soil porosity so that even though there 

is similar respiratory activity, measured C02 fluxes can be different. Indeed, the C02 

concentration in soil air spaces can increase to several thousand ppm (Anderson, 1982). 

This poses problems for measurement of soil respiration, as small perturbations to the 

atmospheric pressure can alter the C02 flux from the soil (Kanemasu et al., 1974). 

Measurement of soil microbial activity and soil organic matter in a laboratory do not 

usually relate to measurements made in the field (Santruckova & Straskraba, 1991). 

This discrepancy arises because the contact between microbes and the organic matter is 

disturbed during sampling, and soil aeration is changed. 

Although much research is continuing on respiration in relation to metabolic 

pathways and its association with physiological processes, understanding of whole 

canopy respiration is still very limited (Amthor, 1989). In actively growing crops canopy 

respiration is usually a small component of the total carbon budget, but in mature 

vegetation the carbon balance is much closer to zero net gain. Whether the carbon 

budget is slightly positive or slightly negative may have significant implications for global 

carbon cycling, and the response of the biosphere to climate change. Understanding of 

canopy respiration is limited but urgently needed. 
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1.4. Water-Use Efficiency 

The stomatal controlled components of water-use efficiency are the instantaneous 

C02 and water vapour fluxes of leaves. The ratio of these fluxes, or the transpiration 

efficiency, is indirectly related to carbon isotope discrimination. Exploitation of this 

relationship as a tool in selection for water-use efficiency traits in plant breeding 

programs depends on the scaling of the instantaneous C02 and water fluxes from leaves 

to long term measurements at the canopy scale. In scaling to the canopy, carbon losses 

through respiration and water losses from soil evaporation, which are not related to 

carbon isotope discrimination, also need to be considered. These issues are discussed in 

more detail in the following sections. 

1.4.1. Instantaneous Transpiration Efficiency 

Diffusion of C02 and water vapour are described by Fick's law and depend on the 

concentration gradient and the diffusion coefficient. In plant and canopy systems it is 

simpler to make an analogy with Ohm's law, to express diffusion as the product of a 

concentration difference and a conductance (g), the reciprocal of resistance (l/r), as 

(1.1) 

(1.2) 

where gc and g are the leaf conductances to C02 and water vapour diffusion, 

respectively, Pa - Pi is the gradient of C02 partial pressures between the atmosphere and 

intercellular airspaces, ei - ea is the gradient of water vapour partial pressures between 

the intercellular spaces (assumed to be saturated at leaf temperature) and the ambient air 

and P is the total atmospheric pressure. 

The ratio of photosynthesis to transpiration follows as (Farquhar & Richards, 1984) 

(1.3) 
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where v is the leaf-to-air water vapour partial pressure gradient (e; - ea) and 1.6 is the 

ratio of diffusivities of C02 and water vapour in air. It can be seen that the 

instantaneous transpiration efficiency (AIE) is negatively related to the ratio of 

intercellular to atmospheric C02 partial pressures, P/Pa· 

1.4.2. Carbon-Isotope Discrimination 

The nature of carbon isotope discrimination in plants and its relationship to 

transpiration efficiency and water-use efficiency was recently reviewed in detail 

(Ehleringer et al., 1993). An overview is given below. 

Naturally occurring carbon atoms exist with several different atomic masses known 

as isotopes. The most abundant (98.9 % ) is the carbon-12 isotope (12C). About 1.1 % 

of all carbon atoms are carbon-13 (13C) and a much smaller fraction are present as 

unstable radioactive isotopes, such as carbon-14. These carbon isotopes are 

incorporated into all carbon containing molecules. However, the heavier 13C containing 

molecules behave differently to the 12c molecules, so that different carbon pools have 

different isotopic compositions. Mass spectrometers used to measure carbon isotope 

ratios express compositions as a deviation (B) from a standard, which for. 13C/12C has 

been a fossil belemnite from the Pee Dee formation in South Carolina (denoted PDB). 

On this scale atmospheric C02 has a B13C of -8.0 %0 (parts per mil), while plant material 

ranges from -8.9 to -30.1 %0. 

In analyses of the isotopic composition of plant material, it is the net isotopic 

discrimination relative to air(~) that is usually used, which is expressed as 

~ = _B_a _-_B.._P 
1+Bp ' 

(1.4) 

where Ba and BP are the relative 13C/12C ratios of air and plant dry matter, respectively 

(Farquhar & Richards, 1984). This measure has the advantage of being independent of 

the isotopic composition of the standard and of the air. 

The heavier 13C atoms have different reaction rates for most molecular interactions 

compared with 12C, mostly slower (Farquhar et al., 1989a). The net result of slower 

reactions is a discrimination against the heavier isotopes and an enrichment of 12C in 

plant material. A simple theoretical analysis, of carbon isotope discrimination against 
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13C02 during photosynthesis, partitioned the fractionation into components associated 

with diffusion (a) and carboxylation (b), ignoring fractionation associated with the 

boundary layer conductance, photorespiration and respiration (Farquhar et al., 1982), 

t1.=apa-P; +b.l!L=a+(b-a).l!L, (1.5) 
Pa Pa Pa 

where P; is the C02 partial pressure in the sub-stomata} cavities and Pa is the C02 partial 

pressure of the air. Direct measurements of discrimination in air passing over 

photosynthetically active leaves confirmed that discrimination in photosynthesis, against 

the heavier 13C containing molecules, occurs in gaseous diffusion (a = 4.4 %0) and 

carboxylation ofribulose bisphosphate (b = 29.0 %0) (RuBP) (Evans et al., 1986). More 

careful analysis can attribute isotope fractionation to each step of the carbon fixation 

pathway in plants (Farquhar et al., 1989a). 

1.4.3. Scaling Water-Use Efficiency 

Extending the instantaneous transpiration efficiency to time scales of plant growth, 

requires that allowance be made for the proportion of carbon lost by respiration at night 

and from non-photosynthetic organs (<j>), and the proportion of water loss that is not 

concurrent with photosynthesis, either by transpiration at night or soil evaporation ( <l>w), 

so that whole-plant water-use efficiency (W) is (Farquhar & Richards, 1984) 

W- Pa(l-<J>c) (1- / ) 
- l.6v(l +<l>w) P; Pa . 

(1.6) 

Thus, the relationship between carbon isotope discrimination and water-use efficiency is 

based on an indirect link through the ratio of intercellular to atmospheric C02 partial 

pressures (p/pa). Combining the above expression with a simple model of 13C 

discrimination (eq. 1.5) produces the relationship between Wand t1., 

W= Pa(b-t1.)(l-<J>c) 

l.6v(b-aX1 +<l>w)" 
(1.7) 

Implicit in extension of this relationship to time scales of plant growth (ie. weeks to 

months) is an averaging of all the variables involved with both t1. and W. In controlled 
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environments of glasshouses this presents few problems. In accordance with the theory, 

a negative correlation between ~ and W was observed in pot experiments with wheat 

(Farquhar & Richards, 1984) and subsequently with many other species (cited in; 

Ehleringer et al., 1993). 

For this relationship to be of use as a tool in breeding programs selecting for traits of 

water-use efficiency, a correlation of~ with total dry matter production in the field is 

required as well as variation of ~ and W within the varieties, which can arise from 

differences in photosynthetic capacity or differences in stomata! conductance. However, 

there are complications when the relationship is applied to field situations where many of 

the components vary (Hall et al., 1994): <Pc changes with phenology; <l>w varies with 

frequency of rain and canopy leaf area; v tends to increase as winter crops mature; and Pi 

changes with v. Additionally, at larger spatial scales v does not remain a truly 

independent variable; it is affected by the transpiration rate which partitions energy into 

either humidifying or heating the air and leaves (Cowan, 1977). This may complicate the 

relationship between ~ & W if the variation arises from stomata! conductance and 

evaporation rather than photosynthesis and carbon accumulation. 

Contrary to expectations, a positive correlation between grain yield .and ~ was 

observed in field trials of wheat (Condon et al., 1987). Some of the previously 

mentioned complications were suspected as playing a role, but since water use was not 

measured in that trial no firm conclusions could be made. Trials with peanuts grown in 

pots embedded in fields did show a negative relationship between W and ~ (Wright et 

al., 1988). These results, encouraging as they were, still did not rule out the possible 

feedback between transpiration rate and v caused by the canopy and leaf boundary layers 

(Cowan, 1988). These effects were thought to be possible explanations for results from 

further field trails that showed the correlation between grain yield and~ was positive in 

wetter environments but negative in drier environments (Condon & Richards, 1993). 

Clearly, clarification of these canopy scale feedback effects could only be resolved by 

large scale field experiments where detailed measurements of carbon gain, water-use and 

carbon isotope discrimination were made concurrently at different scales. 
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1.5. Advection 

As discussed earlier, the canopy boundary layer causes the air to be modified by the 

evaporation rate; the air above canopies with higher evaporation rates is more humid and 

cooler than air above canopies with low evaporation rates, under the same synoptic 

conditions. This modification of the air reduces the evaporation rate, compared to the 

evaporation rate that would have occurred if this feedback did not occur. This feedback 

reduces the sensitivity of evaporation to changes in stomata! conductance. At larger 

spatial scales the evaporation rate becomes less sensitive to changes in stomata! 

conductance (Jarvis & McNaughton, 1986). 

This phenomenon of evaporation-atmosphere interaction, causes some doubt as to 

the value of selecting varieties of wheat with improved water-use efficiency through 

changed stomata! conductance (Cowan, 1988). The insensitivity of evaporation, at large 

scales, to changes in stomata! conductance suggests that if all crops had improved water­

use efficiency through altered stomata! conductance, there would be no reduction in 

water-use (Jarvis & McNaughton, 1986). Given that variation in water-use efficiency 

also comes about as a result of changes in photosynthetic capacity, ·this change of 

evaporation rate will not occur. 

A more immediate problem is the process of selection of wheat varieties with 

reduced stomata! conductance. It is unknown over what distances these canopy 

boundary layer effects continue to develop (ltier et al., 1994), so selection of plot size 

for field trials may be critically important for evaluation of changes in stomata! 

conductance. 

This process of the au equilibrating with vegetation with different stomata! 

conductance is called advection. It is defined as the horizontal flux of a scalar, eg., heat, 

humidity, or C02• In the analysis and modelling of canopy fluxes discussed in earlier 

sections, the canopy was assumed horizontally uniform and.extensive in all directions, so 

that it could be assumed that the air was in equilibrium with the surface. However, at the 

edges of plots this is no longer valid and advection may play a significant role. 

Agronomists have had an awareness of edge effects and usually include a border of 

plants around their field trials, which are discarded in subsequent analyses. However, the 

basis for choosing the size of the border has often been arbitrary. In many cases where 

the main edge effects are caused only by an altered light environment, these assumptions 
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are probably sufficient, but where there is an interaction with the atmosphere as is the 

case with altered evaporation rates, then small borders may lead to erroneous 

conclusions. 

Several experiments have been conducted where hot dry wind from an arid area 

blows across an irrigated crop (Rider et al., 1963; Lang et al., 1974). The observed 

advection is a result of changes in both surface roughness and surf ace conductance. As 

expected the air temperature decreases, humidity increases and water vapour deficit 

decreases with increasing distance downwind from the upwind edge of the irrigated field. 

The situation of adjacent paddocks with different stomatal conductance is a less 

severe change than the arid-irrigation changes; the effect of the interactions between the 

vegetation and the atmosphere will be more subtle. It is likely that any horizontal 

gradients of air temperature or humidity will be one to two orders of magnitude smaller 

than the vertical gradients in the air above the canopy. 

Several models have been developed to describe advection at step changes in surface 

properties, which have recently been reviewed (Brutsaert, 1982; Garratt, 1990; ltier et 

al., 1994)~ They describe the development of the new boundary layer,_ scalar 

concentrations and fluxes as a function of distance downwind from the leading edge. 
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1.6. Thesis Hypothesis and Outline 

The information presented above outlined the importance of understanding scaling 

from leaves to canopies for both improved agricultural production and understanding of 

global carbon and hydrological cycles. Current knowledge about scaling-up water-use 

efficiency and its components of photosynthesis and water use was reviewed. Concerns 

about the effect of vegetation-atmosphere interactions on improving water-use efficiency 

through changing stomatal conductance were also raised. It follows that a better 

understanding of scaling physiological processes is needed. 

The objective of this thesis is to examine the scaling-up of water-use efficiency from 

leaves to paddocks. The hypothesis is that physiological and physical process operating 

on individual leaves can be scaled to describe canopy fluxes of C02 and H20. Many of 

these processes are non-linear with complex interactions. The hypothesis is tested by 

examining flux data at different spatial scales, by developing scaling models that can be 

used to examine the effect of physiological traits at the canopy scale, by examining 

advection of heat and water vapour as an additional complication at larger spatial scales. 

Details of the field site and measurement techniques are presented in Chapter Two. 

Chapter Three addresses the scaling of water-use efficiency from leaves to canopies by 

examining flux data at different spatial scales and evaluates the measurement techniques. 

Further analysis of the flux data is aided by models of stomatal conductance and canopy 

photosynthesis that are developed in the subsequent four chapters. Chapter Four is an 

evaluation of several approaches to modelling stomata} conductance of leaves from both 

laboratory and field data. Chapter Five extends these models of leaf conductance to 

canopy conductance. Chapter Six compares a big leaf and multi-layer model of canopy 

photosynthesis and presents an improved simple canopy model, which treats sunlit and 

shaded leaves separately. Chapter Seven evaluates the sun/shade canopy photosynthesis 

model with the field data. The models of the previous four chapters are combined in 

Chapter Eight to examine the component interactions and are assessed with different 

parameterisation schemes against field data. It also readdresses the scaling of water-use 

efficiency from leaves to canopies with the aid of the models. Chapter Nine examines the 

advection issue. Finally, Chapter Ten presents a discussion and conclusions of the entire 

thesis. 
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Material and Methods 

Summary 

This chapter describes the field site and techniques used in the experiments described 

in this thesis. A large field site was established at Wagga Wagga, to assess water-use 

efficiency in the field. Two varieties of wheat were grown, Matong and Quarrion, in 

adjacent paddocks. They were chosen for their contrasting water-use efficiencies, which 

was attributable to ca. 40 % difference in stomata! conductance. 

Fortnightly harvests of the crop were made to measure leaf area and dry matter 

accumulation. Neutron probe measurements and time-domain reflectometry (TDR) 

monitored the changing soil water profile. Large lysimeters in each paddock measured 

evaporation continuously. A weather station continuously recorded meteorological data. 

An intensive gas exchange campaign was conducted in the weeks pre- and post­

anthesis. Measurements of leaf gas exchange were made with a Li-Cor 6200. Large 

ventilated chambers (Tents) measured gas exchange from sections of canopy. Bowen 

ratio systems measured fluxes from each paddock. An eddy correlation system made 

measurements, but less routinely. 

· Soil respiration was measured with a specially built chamber attached to the Li-Cor 

6200. Soil evaporation was measured with mini-lysimeters beneath the canopy (Leuning 

et al., 1994). 

A system of travelling sensors was used to monitor the environment to detect 

advection at the interface between the canopies. 
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2.1. Laboratory Gas Exchange 

Plants for gas exchange were grown in 5 litre pots in a glasshouse at Canberra during 

winter, 1991. Mean maximum temperatures were 26°C during the day and 20°C at 

night. Pots were flushed with half strength Hewitts solution (Hewitt & Smith, 1975), as 

modified by (Wong, 1979) (Table 2.1) three times a week. Gas exchange was performed 

on fully expanded flag leaves. Plants for gas exchange were left in the laboratory over 

night to equilibrate with room temperature. 

2.1.1. 

Table 2.1 Composition of the nitrate-based Hewitt nutrient solution, 

which was used to fertilise glasshouse grown plants for laboratory gas 

exchange measurements. 

Nutrients Concentration Micronutrients Concentration 
(mM) (f:!M) 

No-
1 4.0 FeNaEDTA 50 

H PO 2-2 4 1.33 MnS04·4H20 10 
K+ 4.0 ZnS04·7H20 1 
Mg2+ 1.5 CuS04·5H20 1 
Ca2+ 4.0 H1B01 50 
Na+ 1.33 NaiMo04·2H20 5 
so 2-4 1.5 NaCl 100 
a- 8.0 CoS0~·7H20 0.2 

Gas Exchange System 

Gas exchange measurements were conducted at Environmental Biology, RSBS, 

ANU, as described by (Brugnoli et al., 1988) with the modifications described by 

(Hudson et al., 1992). The main features are described below and in figure 2.1. 

A double-sided aluminium cuvette with a glass window was clamped around a leaf so 

that 2.4 cm2 of lamina was exposed to the light and air flow. Independent air flow across 

the upper and lower leaf surfaces allowed separate gas exchange of each surface. Water 

circulating through the body of the chamber and embedded electrical heating elements 

regulated leaf temperature. Combined boundary layer conductance to water vapour 

transfer for both sides of the leaf was measured at 2 mol.m-2.s-1 from the evaporation rate 
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of a wet filter paper in the chamber. Calculated fluxes from the upper and lower leaf 

surfaces were combined to give whole leaf gas exchange. 

The leaf was illuminated by a 250 W metal halide lamp. An infra-red mirror was 

place between the lamp and the leaf to reduce the heat load. Variation in light intensity 

was obtained 1). by varying the distance between the lamp and the leaf, 2). by a series of 

copper wire screens or 3). by a combination of neutral density filters (Balzer, 

Liechtenstein). 

Ambient air was scrubbed of C02 by two 0.8 m soda-lime columns connected in 

series and an activated charcoal column. C02 free air flow was controlled by a mass 

flow controller. Air was saturated with water vapour through a series of two sintered 

bubblers in distilled water and then passed through a glass condenser column to set the 

humidity level. A temperature regulated water bath was used to circulate cooling water 

through the water jacket of the condenser to set the dew point of the air. A mass flow 

controller was used to inject 2% or 10% C02 in air to give the desired C02 concentration. 

Manual flow valves regulated the air flow to each side of both chambers at 0.8 L.min-I. 

Inlet and outlet vapour pressures of the air were measured with a relative humidity 

sensor (1518HM Humicap, Vaisala) set in an aluminium block. ,The temperature of the 

aluminium block was controlled at 35 ± 0.1 °C. The increase in humidity between the 

condenser and the air from the chamber was used to calculate the transpiration rate. 

Absolute C02 concentration of air before the chamber was measured with an absolute 

infra-red gas analyser (IRGA) (Fuji electric, model ZAR), while the change in C02 

concentration before and after the chamber was measured with a differential IRGA 

(Beckman Instruments, model 865). Constant pressure was maintained throughout the 

system with overflow bubblers. A manometer was used to measure the pressure of the 

system with reference to the atmospheric pressure (approx. 350-450 mm of water over­

pressure). Air pressure (typically 95 kPa at Canberra) was measured each morning from 

an aneroid barometer (Mechanism Ltd., Type No. M1991/A). 

Leaf temperature was measured with a 100 µm copper/constantan thermocouple 

pressed against the lower leaf surface. Additional thermocouples measured the 

condenser and humidity sensor temperatures. Sensors were scanned by an analog to 

digital board in a standard IBM compatible PC. A chart recorder monitored instrument 

voltages. Calculations of gas exchange were based on those given by von Caemmerer & 

Farquhar (1981). 
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Figure 2.1 Flow diagram of laboratory gas exchange system, set up for 

concurrently measuring with two clamp-on leaf chambers by switching air streams 

with solenoid valves. 
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2.2. Field Site 

Field work was conducted on wheat crops grown on 6 ha of land at the Experimental 

Farm of Charles Sturt University, 5 km north of Wagga Wagga, New South Wales, 

Australia (35° 3.5' S, 147° 20.5' E, 272 m asl). Wagga Wagga is on the wetter, eastern 

side of the cropping belt of south-eastern Australia. Land use in the surrounding district 

is wheat and other winter crops and pasture. The landscape rises to a peak in the east 

( + 30 m), but is nearly flat for several kilometres in the other directions, from which the 

wind prevails. 

The mean annual rainfall is 480 mm, occurring throughout the year, but heavier in 

winter. The mean rainfall during the growing season (May-November), is 308 mm. 

Frosts during winter restrict the sowing date for wheat crops, so that they flower after 

the last frost. Spring weather is characterised by, pre-dawn temperatures of a 1 - 5 °C, 

clear skies until late morning, followed by patchy cloud for the rest of the day. A diurnal 

temperature range of 20° is common. Occasionally during grain filling, there were hot 

days (35°C) with northerly winds before cold fronts moved in from the south-west. 

The soil is a red earth. The profile has a disturbed shallow A horizon, a uniform B 

horizon to l .80m. A hard layer was observed at 0.9-1.0m, with concretion of calcium 

carbonate below I .Om. 

2.2.1. Agronomy 

Two wheat (Triticum aestivum L.) cultivars, Matong and Quarrion, were selected for 

this experiment from an extensive screening program (Condon, pers. comm.) based on 

carbon isotope discrimination as an indicator of water-use efficiency (WUE) (Farquhar & 

Richards, 1984). The cultivars were selected for contrasting WUE, which were derived 

from differences in stomata! conductance, rather than photosynthetic capacity, while 

having similar growth habit and development. Cultivar Matong was identified as having 

low WUE, and cultivar Quarrion has high WUE derived mostly from ca. 40% lower 

stomata! conductance. 

Farm staff of the Charles Sturt University were responsible for the ground 

preparation and maintenance of the crops. A non-selective herbicide (glyphosate) was 

used prior to cultivation. A fine seed bed was prepared during May with a tyned 

cultivator. 
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In 1989 the crop was sown on 28 May. The crop suffered from an infestation of wild 

oats (Avena negra), a common weed of crops. 

During the following summer the paddocks were left fallow and the stubble burnt in 

April, 1990. A pre-emergent herbicide (Triallate) was applied before sowing. The crops 

were sown on May 22, 1990 (Day 142) at 60 kg.ha-1 for cultivar Quarrion and 50 kg.ha-I 

for cultivar Matong. The different sowing density was an attempt to compensate for the 

reduced early vigour of Quarrion. Nitrogen was applied at sowing as 130 kg.ha-1 of 

diammonium phosphate (20% P, 18% N). The crop was harvested on 14 December, 

1990. 

The 1991 crop was sown on 25 May. Post emergent herbicides were applied to the 

crops at 4 weeks. Selective herbicides were applied at 10 weeks to control wild oats 

(Avena negra). Additional nitrogen 25 kg.ha-1 was applied as urea 4 weeks prior to 

anthesis. 

Fortnightly dry matter harvests of 8 x 0.5 m2 quadrats were made by Dr. Tony 

Condon of CSIRO, Division of Plant Industry and staff of Charles Sturt University. 

These were sub-sampled to determine green leaf, dead leaf, stem, head and total biomass, 

and leaf area index. Final biomass and grain yield were measured at harvest. 
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2.3. Leaf gas exchange 

In the field, leaf photosynthesis and stomatal conductance were measured with a 

portable photosynthesis system (Li-Cor 6200, Lincoln, NE, USA). The system operates 

in a closed circulation draw down mode for photosynthesis measurement. Stomatal 

conductance is calculated from the leaf-to-air vapour pressure difference calculated from 

leaf temperature, measured with a thermocouple, a humidity sensor and the flow rate of 

air through a MgC104 desiccant required to balance the transpiration and maintain a 

steady water vapour pressure in the chamber. 

Accurate measurements with this system require that the leaves have no free surface 

water from either rain or dew. This limited the commencement of measurements in the 

morning, since heavy dews were a feature of the Wagga climate. Attempts to dry 

individual leaves for measurements were not reliable. 

Leaves for measurement were selected at random from the youngest fully expanded, 

sunlit leaves at the top of the canopy. The chamber was enclosed around a 3.6 cm 

section of leaf that. was perpendicular to the sun's rays and maintained at this angle 

throughout the measurement, thus ensuring that stomata were in an equilibrium state 

with the light regime. Partially cloudy weather, typical of Wagga Wagga during spring, 

made accurate measurements difficult due to the rapidly changing light conditions. 

Measurements were delayed until there had been at least 10 minutes of consistent light ( < 

10% variation). However despite these precautions, data from partially cloudy days 

were characteristically more scattered than on clear or overcast days. Several (5-8) 

replicate measurements were made on different plants of a cultivar before moving to the 

next cultivar. These measurements were made by myself and on some days by Peter 

Groeneveld and Mary Grealy of Environmental Biology, ANU. 
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2.4. Canopy fluxes 

Three different canopy flux measurement techniques were used: ventilated chambers, 

Bowen ratio and eddy correlation as described below. 

2.4.1. Ventilated Chambers 

These measurements were made by Dr. Chin Wong of Environmental Biology, ANU. 

Design and construction of the chambers was by him, Peter Groeneveld and Win 

Coupland of Environmental Biology, ANU. 

Two ventilated chambers were placed over sections of each crop to simultaneously 

measure canopy gas exchange. Photosynthesis and transpiration were determined by 

measuring the change in carbon dioxide and water vapour concentrations of air as it was 

drawn from the ambient atmosphere and passed over the crop enclosed in the chamber. 

Samples of air from the inlet and outlet manifolds of both chambers were pumped 

through buried, heated tubing to a shed where the gases were analysed by IRGAs (figure 

2.2). 

2.4.1.1. Construction 

The chamber covered 2.3 m2 of crop, with a height of 1.25 mat the front, rising to 

1.52 m at the rear wall, giving a total volume of approx. 3.2 m3. The panels were 

constructed from sheets of 100 µm polyethylene stretched over 2.5 cm aluminium angle 

as a frame and sealed with a foam gasket. The chamber was attached to a 1.38 x 1.66 m 

frame of 50x 100 mm angle steel that was hammered into the soil for an airtight seal. 

The southern wall of the chamber was made of clear 2 mm thick acrylic sheet for 

additional strength to mount four inlet manifolds at the bottom, four outlet manifolds at 

the top and two 25 cm exhaust fans for mixing. Air was forced into the tent by a 30 cm 

in-line fan at 200 L.s-1 through the four inlet manifolds. 

An air stream was drawn for analysis from the inlet and outlet manifolds and pumped 

at 8 L.min-1 through approximately 150 m of buried, insulated 6 mm ID. polyethylene 

tubing heated with 13.1 W.m-1 self temperature regulating (60 °C) heating cable to 

ensure there was no condensation of water vapour. The pumps were near the chambers 
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so that all remaining hoses were under pressure to eliminate problems of inward leaks 

and contamination. 

Side view 

Analysis Shed 
Tent1 ~ Tent2 ~ 

Heated Buried sample lines 

Quarrion Ma tong 

Tent 1 Tent2 
Plan view 

D D 
Gas lines 

Figure 2.2 Layout of ventilated tents for measuring canopy gas exchange and 

underground gas lines for air sampling to measure C02 and H20. 

2.4.1.2. Gas Analysis 

A high flow rate through the tent was necessary to minimise the temperature 

increase, but this also minimised the C02 depletion and humidification. At maximum 

rates of photosynthesis a C02 differential of 1.2 Pa was observed and a change in water 

vapour pressure of 0.4 kPa between inlet and outlet air. To accurately measure these 

small differences a dual channel C02 and H20 IRGA (BINOS, Inficon Leybold-Heraeus, 

Inc., E. Syracuse, NY) was used in differential mode, whereby the compositions of two 

air streams are compared by passing one stream through the reference cell and the other 

stream through the sample cell. 
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The absolute C02 concentration was measured with a single-channel BINOS-1 IRGA 

in absolute mode, which was checked with a bottle of compressed air of known C02 

concentration each morning. The actual humidity of the air was measured with a 

psychrometer consisting of shielded, ventilated, wet and dry platinum resistors (Ptl 00) 

outside the tent. 

The sample air streams arrived in the processing shed where a system of solenoid 

valves selected which air stream passed through the IRGAs. After switching between 

each stream a delay of 70 seconds was allowed for the system to purge. All the sensors 

were then logged by a Datataker (model DTlOO, Data Electronics Australia Pty. Ltd.) 

until thirty measurements were taken in approx. 30 seconds and an average calculated. 

At the beginning of each measurement cycle a zero check on the differential IRGA 

was performed by passing the same air through both cells. Any drift in the zero value 

was incorporated into the calculations. Inlet and outlet air from the first tent was then 

measured, followed by air from the second tent and the process repeated with a zero 

check. In all, each cycle to measure both tents took approx. 12 minutes. 

The path of air flow through the different gas analysers is shown in figure 2.3. From 

the solenoid valves the air was split and passed through the C02 and H20 IRGA in 

parallel. The analysis of carbon dioxide concentration with an IRGA required a constant 

known water vapour concentration, which was achieved by passing the air through a 

water/ice trap. The air stream then split to the absolute IRGA and to the C02 differential 

IRGA. The pressure in each air line was maintained constant and equal by branching the 

air into a bubbler to provide a constant over-pressure. 

Solenoids 

Bubbler Ice bath 

Abs C02 
IRGA 

Figure 2.3. Layout of field gas analysis system used to measure canopy C02 and 

H20 fluxes with the ventilated chamber. 
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The rate of photosynthesis was calculated from the flow rate through the tents and 

the C02 differential. An accurate measurement of the flow rate through the tent was 

determined by injecting a known flow rate of pure C02 into the inlet airstream before the 

fan and measuring the resultant increase in C02 concentration just before the tent. 

Inside each tent was a quantum sensor (Li-190SB, Li-Cor, Lincoln, NE, USA) to 

measure photosynthetically active radiation (PAR, 0.4 - 0. 7µm). Ten thermocouples 

(Copper/Constantan, 0.1 mm) in parallel were attached to leaves scattered through the 

canopy to measure leaf temperature. The reference junction of the thermocouples was 

embedded with a platinum resistor (Pt 100) in a small aluminium block ( 1 x 1 x 2 cm), 

which was shielded with an aluminium can. The platinum resistor was used to provide 

the reference junction temperature. A separate thermocouple was used to measure air 

temperature inside the tent at the top of the canopy. Air temperature and water vapour 

pressure were measured outside the tent at 1.8 m above ground with aspirated (36 mm 

diameter fan, 280-360 L.min-1) wet and dry bulb psychrometer using platinum resistors 

(Ptl 00) as temperature sensors. 

At the commencement of a measurement period, the tent was placed over the 

canopy, where it remained for several days. Overnight condensation limited the use of 

evaporation and conductance data from early morning. If rain occurred while the tent 

was in place the tent was moved to a new site, to ensure that the chamber was covering a 

truly representative section of canopy. 

Calculations for rate of photosynthesis and transpiration were based on the equations 

for gas exchange presented by (von Caemmerer & Farquhar, 1981). 

2.4.2. Bowen ratio 

The Bowen ratio technique assumes a zone above the crop where fluxes are constant 

with height, implying an arealy uniform flux. Measurements were made in the centre of 

each block to ensure at least 90 m fetch was available. These measurements were made 

by Frank Dunin and Wybe Reyenga of CSIRO, Division of Plant Industry, as described 

in detail by (Dunin et al., 1989a). 

This technique measures the finite differences of temperature and humidity above the 

crop and relates their ratio to that of the sensible and latent heat fluxes by the Bowen 

ratio(~) as calculated from 
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The latent heat flux (LE, positive upwards) was calculated from 

LE= Rn -G 
1+~ ' 

(2.1) 

(2.2) 

where net radiation (Rn) and ground heat flux ( G) densities were positive downwards. 

where P is atmospheric pressure, CP is specific heat of dry air, L is latent heat of 

vaporisation, Eis the ratio of molecular masses of water to dry air, and t!..T and de are 

finite differences of potential temperature and vapour pressure measured over a 1 m 

interval with the lowest sensor between 0.25 - 0.40 m above the canopy in the centre of 

each plot. Any potential bias in the wet and dry bulb sensors was eliminated by 

interchanging the upper and lower sensors every fifteen minutes and half hourly averages 

calculated. 

The C02 gradient was measured at the same height above the canopy by pumping air 

to the shed through heated polyethylene tubing (as described for the tents) for analysis in 

a dual channel C02 and H20 differential infra-red gas analyser (BIN OS, Inficon Leybold­

Heraeus, Inc., E. Syracuse, NY). The C02 gradient, combined with a transfer coefficient 

calculated from the water vapour transfer, was used to calculate the paddock C02 flux. 

Rn was measured with a net radiometer (Middleton & Co. Pty. Ltd., C.S.l.R.O., Division 

of Atmospheric Physics, Aspendale, Australia). Ground heat flux was measured with 3 

heat flux plates (Middleton & Co. Pty. Ltd., C.S.l.R.O., Division of Atmospheric 

Physics, Aspendale, Australia) in series buried at 2 cm. No corrections for heat storage 

in the surf ace soil layer were made. 

2.4.3. Eddy correlation 

The eddy correlation technique was used by Dr. Tom Denmead, Dr. Ray Leuning, 

Alan Jackson and Gary Miller of CSIRO, Centre for Environmental Mechanics to obtain 

fluxes of C02, latent heat, sensible heat and the friction velocity, u*. The principles of 

the technique are described in detail in texts such as (Haugen, 1973). Details of the sonic 

anemometer/thermometer system have been given elsewhere (Coppin & Taylor, 1983). 

A brief outline is give below. 
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Three dimensional sonic anemometers of 20 cm path length were used together with 

a fine wire platinum resistor for measuring temperature, a Krypton hygrometer 

(Campbell Scientific, Logan, Utah) for measuring water vapour pressure and an open 

path C02 and H20 sensor (E009 Advanced Systems Inc, Okayama, Japan). The sensors 

were logged at 20 Hz and covariances calculated in real time. Corrections for air density 

due to heat and water vapour fluxes were made using the standard equations (Webb et 

al., 1980). 
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2.5. Soil fluxes 

2.5.1. Gas exchange chamber 

A stainless steel chamber was constructed for use with the Li-Cor 6200 system to 

measure soil respiration. The dimensions of the chamber ( 13 x 10 cm) allowed it to be 

pressed into the soil between the rows of wheat ( 17 cm spacing) to a depth of 

approximately 2 cm. The Li-Cor 6200 sensor head was attached to the top of the 

chamber. A small fan (100 L.min-1) was used to stir the air within the chamber. An 

electric manometer was used during the initial setup to ensure that the differential 

pressure between the atmosphere and the chamber was below 10 Pa. Respiration rates 

were obtained by monitoring the rate of increase in carbon dioxide concentration. After 

inserting the chamber and placement of the sensor head approximately fifteen seconds 

was required to mix the air with the system and to observe a steady rate of C02 increase. 

Measurements were made over the next 20 seconds. Five replicate measurements were 

made under each crop on randomly selected soil. 

2.5.2. Mini-lysimeters 

During 1990 and 1991 Dr. Ray Leuning, CSIRO, Centre for Environmental 

Mechanics, measured soil evaporation by manually measuring the weight change in soil 

cores beneath the canopy. The 1990 trial consisted of measuring weight changes of soil 

cores over a period of a few days. The cores were encased in approx. 100 mm lengths of 

40 mm diameter aluminium tubing and sealed at the bottom with laboratory plastic film 

(Parafilm, American Can Company). Cores were carried to the shed for weighing three 

times a day in a covered bucket to minimise water loss while away from the canopy, 

weighed and then returned to their locations beneath the canopy. After a few days these 

cores appeared drier than the soil and were replaced with new cores. 

(Leuning et al., 1994) describes the more thorough 1991 experiment in detail, but a 

brief description is given here. At the beginning of the season 120 sleeves of 40 cm 

lengths of 200 mm diameter polyethylene piping were hammered into the soil in a 

randomised arrangement across the paddock. Throughout the season eight cores were 

extracted, sealed at the bottom and weighed at the beginning of each week. The cores 

were removed from the crop, weighed and returned, three times a day for one week and 
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then new cores were extracted. Between each weighing the cores were carefully 

reinserted beneath the canopy to minimise damage to the canopy. New cores were used 

each week to minimise the deviation in soil moisture content between the cores and the 

real soil between the canopy. 

2.5.3. Neutron probes 

Installation of neutron probe access tubes and measurements were made by Dr. Tony 

Condon of CSIRO, Division of Plant Industry and staff of Charles Sturt University. 

Details of the procedure are described by (Condon et al., 1993), so only a brief 

description is given here. Sixteen neutron probe access tubes, of 40 mm diameter 

aluminium tubing, were installed to a depth of 1.8 m across the paddocks in a regular 

array shortly after sowing. The tubes were then probed fortnightly until harvest. 

Soil water profiles from access tubes beneath the wheat crop were integrated to 

determine total water-use over the fortnight. Similar tubes were installed on bare land 

adjacent to the crop, from which bare soil evaporation was determined. The method of 

Cooper et al., (1983) was used to then estimate soil evaporation from beneath the crop. 

This method entails measuring radiation penetration though the canopy, which is used as 

a correction factor to convert bare soil evaporation to soil evaporation beneath the crop. 

Radiation penetration was measured at midday with a linear ceptometer (Sunfleck 

Ceptometer, Decagon Devices Inc., Pullman Washington). 

2.5.4. Time domain reflectometry 

Installation and maintenance of the TDR equipment was by Steve Zegelin and Dr. Ian 

White of CSIRO, Centre for Environmental Mechanics. Details of the equipment, its 

installation and operation are given by (Zegelin et al., 1992), but a brief description is 

given here. Probes were installed at four locations in both crops. Vertical probes were 

installed from the surface to 10, 20, 40, 50, 60, 80, 100 cm depth and were logged 

manually approximately once a month through the growing season. Horizontal probes of 

53 cm length were installed at 5.5, 10, 20, 40, 60, 80 cm from a pit dug to 1 m. They 

were logged automatically every two hours from a central computer. 
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2.5.5. Lysimeters 

A weighing lysimeter was installed in the centre of each plot, by Frank Dunin and 

Wybe Reyenga of CSIRO Division of Plant Industry, who maintained them. Details are 

given in (Dunin et al., 1991). A monolithic core 2 x 2 m of 1.8 m depth was extracted 

and sealed with a steel case. A large pit was dug and a beam balance installed in the 

bottom. The lysimeters were logged continuously by counting the revolutions of a 

counterbalance required to maintain an equilibrium with the weight. 
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2.6. Transect Measurements 

The two crops with inherently different stomatal conductances were expected to have 

different rates of evaporation. As the wind blew across the interface between the crops 

new canopy boundary layer conditions would develop reflecting the interaction between 

the evaporation surface and the atmosphere. Horizontal gradients of air temperature, 

humidity and leaf temperature were measured along a transect across the interface 

between the two crops using a set of travelling sensors. Two different systems were 

used as described below. 

2.6.1. Flying fox 

This equipment was designed and constructed by Mr. Peter Groeneveld and Mr. Win 

Coupland of Environmental Biology, ANU. I operated the system in the field during the 

spring of 1989 with assistance from Dr. Chin Wong also of Environmental Biology, 

ANU. 

The expected changes in the environmental variables associated with the change in 

surface conductance between the two crops were very small, their magnitude being 

similar to the accuracy of the sensors. A series of sensors located at fixed distances from 

the interface were unlikely to resolve the small changes, since the variability between 

sensors may be as great as the changes expected. To overcome this dilemma the same 

sensors were used to measure the variables at all the locations by moving the sensors, 

since the precision was greater than the accuracy. Thus a system, the "flying fox", was 

constructed that could move sensors for measuring leaf and air temperatures and 

humidity along a transect above the crop canopy. Stationary sensors measured net 

radiation, wind speed and direction. 

In creating such a system it was important to consider that the impact on the crop 

had to be minimal. Damage by trampling would significantly alter the micro environment 

above the crop. Suspending the sensors from a cable above the crop was a solution that 

was easy to erect and avoided damaging the crop. 
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2.6.1.1. Construction 

The "flying fox" consisted of a cable strung between two posts 20 m apart, with a 

small trolley that moved along carrying the sensors. Since the horizontal gradients were 

2 orders of magnitude smaller than the vertical gradients it was important to ensure that 

the height of the sensors above the crop was kept constant. This was achieved by 

keeping the cable very taut using a system of ratchets attached to the anchor posts at 

either end and a strain gauge to monitor the tension. The cable was high tensile 4 mm 

stainless steel, connected to the posts with marine U-bolts. The posts were 2 m lengths 

of 50 mm galvanised C-section, which were later strengthened with a strip of flat steel 

(figure 2.4). 

Figure 2.4 The 'flying fox' system of moving sensors; a small trolley with sensors 

for air and leaf temperature and humidity propelled along a 20 m transect above 

the crop canopy. 

The trolley was a simple, split level, light-weight, aluminium, open platform 

suspended from the cable by two 50 mm aluminium wheels. A light aluminium roof 

shaded the instruments from direct solar radiation. The trolley was pulled by a towing 

cable looped to either end and driven by a windscreen wiper motor powered from a 12 V 

gel cell. Leads from the sensors were fed through a length of 13 mm nylon self coiling 

air hose, which was looped around the tension cable. It would stretch out as the trolley 

moved and recoil as it returned. 
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2.6.1.2. Sensors 

Leaf temperature was monitored with two 15° field of view, infra-red surface 

temperature sensors (Model 4002, Everest) mounted at 45° to the horizontal, 0.5 m 

above the top of the canopy. These sensors were powered by a 12 V regulated power 

supply. Surface temperature was determined from the sum of a detector temperature 

and a temperature differential. The sensors were calibrated against a black body 

radiator, with an embedded platinum resistor (PtlOO), over a range of temperatures 

generated by heating and cooling both the radiator and the sensors themselves. Surface 

radiative temperature was determined as an average of one east facing sensor and one 

west facing sensor with an assumed crop emissivity (Ee) of 0.97. 

Air temperature was measured with a 100 µm copper/constantan thermocouple 

referenced to a platinum resistor (PtlOO) mounted in an aluminium block. Relative 

humidity was measured with a humidity sensor (1518HM Vaisala, Humicap). Both the 

thermocouple and the humidity sensor were mounted in a double shielded psychrometer 

with a 36 mm fan drawing air up past the sensors at 280-360 L.min-I (approx. 5-7 m.s-1). 

The humidity sensor was calibrated in the laboratory with an air stream saturated with 

water vapour at a dew point set on a c0ndensor. The humidity sensor was found to have 

a different response to relative humidity at different air temperatures, so this was also 

included in the calibration function. 

Distance traversed was measured by an idle wheel with an optical switch, which 

overcame uncertainties due to slippage on the cable, so that sensors could be scanned at 

regular intervals along the transect. A datalogger (Datataker DT 100, Data Electronics 

Aust. Pty Ltd.) logged all the moving sensors as well as a Middleton net radiometer 

(Middleton & Co. Pty. Ltd., C.S.I.R.O., Division of Atmospheric Physics, Aspendale, 

Australia), a wind vane with an anemometer (model 1010 & 1005 Sierra/Misco Inc.) and 

two additional anemometers (Rimco 5 cm turning radius, 3 cm diameter cups). 

2.6.1.3. Control 

Switches at either end of the transect signalled when the fox had completed a 

traverse. A computer, located in a shed next to the paddock, communicated with the 

datalogger via an RS-232 cable, receiving data and sending commands to control the 

direction of the fox. Processed data were displayed on screen as received and stored at 

the end of each run. Observations were taken approximately every 60 cm and each 
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traverse took about 90 seconds; thus observations were taken at each location about 

every 5 minutes. 

2.6.2. Mono-rail 

This equipment was designed and constructed by Peter Groeneveld and Win 

Coupland of Plant Environmental Biology, ANU. From the results of 1989 using the 

"flying fox" system, it was apparent that changes were necessary, so the system was 

rebuilt and became the "monorail". The measurements and sensors used were the mostly 

the same, but the system of locomotion changed. 

In 1989, the posts for the flying fox system became difficult to install as the soil 

dried. It was impossible to get sufficient penetration with the posts to support the 

tension to keep the cable taut. Additional stays and support posts were necessary. After 

a period of continuous heavy rain, the soil would not support any tension on the posts. 

In addition, analysis of the data revealed that the air above the crop had not reached a 

new equilibrium with the changed surf ace conductance within the length of the transect 

(20 m). (Finally, a cow entered the field and became entangled in the cables severely 

damaging the system). At the end of the season it was recognised that the. system had 

become cumbersome and was no longer easy to move or install and there was 

considerable damage to the crop. A new system was needed. 

2.6.2.1. Construction 

The monorail consisted of a self-propelled sensor platform that traversed along a 

steel track erected across the paddock (figure 2.5). The rail was constructed from ten 6 

m lengths of 50 x 100 mm galvanised steel C-section roofing beams connected end to 

end, giving a total length of 54.6 m. The rail was supported at the joints by stands that 

were made of 35 mm square steel tubing and consisted of three components; a base, a 

trunk and an adjustable arm, for levelling the rail and for different crop heights. 

Additional stays of 13 mm steel rod at the centre of each rail section were found to be 

necessary to prevent the rail from twisting with the weight of the train. 

The train was an enclosed light aluminium box 800 x 300 x 40 mm hanging from the 

rail by two 75 mm diameter wheels. Propulsion was from a reversible roller door motor 

through a gearing mechanism pressing onto the axle of one of the wheels with an 'O'-ring 

and powered by a 12 V gel cell battery in the train. As with the 'flying fox', an idle wheel . 
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with an optical counter was used to record the distance travelled. Break switches were 

mounted on the train at either end and closed when pressed against a block mounted at 

either end of the rail to mark the return point. These blocks were attached by magnets 

so they could easily be moved to restrict the train to any particular section of rail, 

depending on wind direction. Traction on the rail was enhanced by using neoprene 'O'­

rings as tyres. 

temperature/humidity 
sensors -----.._ 

Controls 

Figure 2.5 The monorail system of moving sensors; a self-propelled platform with 

sensors for air and surface temperature and humidity moved along a 58 m rail 

across the crop canopy. 
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2.6.2.2. Sensors 

Sensors were mounted on a mast of 13 mm aluminium rod extending above the train. 

The humidity and temperature sensors were the same as used on the 'flying fox'. They 

were mounted 40 cm to the eastern side of the rail and adjusted to be 25 cm above the 

top of the crop. An additional thermocouple was installed in a similar psychrometer a 

further 25 cm higher. It was set up in series with the lower thermocouple to give a 

temperature differential relative to the Ptl 00 reference junction. The infra-red surface 

temperature sensors were mounted near the top of the mast at approx. 1 m above the 

crop and also pointed east and west. By geometrical analysis, it was estimated that they 

scanned an ellipsoid area approximately 2.3xl.8 m or 3.5 m2• Sensors were scanned and 

logged at regular intervals along the rail by a datalogger (Datataker DT 100, Data 

Electronics Aust. Pty Ltd.) mounted in the train. 

A second datalogger (Datataker DTlOO, Data Electronics Aust. Pty Ltd.) scanned 

the net radiometer, wind vane and three cup anemometers as with the 'flying fox'. These 

signals were sent down an RS-232 cable to the shed. 

2.6.2.3. Communications 

It wasn't possible to use a fixed line communications cable so telemetry was used. 

The digitised data was sent down an RS-232 line to a Smart Radio Modem (Model 

RMlOO, CPU-100 v3.6, NetComm Australia, Pty Limited) and then transmitted by a low 

powered FM transceiver (Realistic, Tandy Corp.) at 55.05 MHz. Data were received by 

a similar FM transceiver approximately 50 m from the rail and reconverted by another 

Smart Radio Modem to a digital signal and sent down an RS-232 cable approx. 150 m to 

a computer in a shed outside the paddock. The Smart Radio Modem performed integrity 

checks on the data to ensure that they were all correct. The two dataloggers were daisy 

chained and used the same RS-232 line to communicate with the host computer. 

Electrical interference, detected on the thermocouples, was traced back to an 

intermittent hum from the radios. This problem was overcome by cutting power to the 

train's radio prior to scanning the sensors. This was achieved by programming the scan 

schedule of the Datataker to trigger a relay to cut the power, wait 50 ms for the radio to 

fade, scan the sensors, re-trigger the power relay and then transmit the data. When 

atmospheric conditions were not ideal, there was some delay in the radio relay 

reconnecting. This occasionally caused some loss of data. 
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Summary 

A multi-disciplinary project was established to assess the relationship between ~ 

(discrimination against 13C) and WUE (water-use efficiency) in the field. Two cultivars 

of wheat, Matong and Quarrion, were grown in large paddocks. These cultivars had 

contrasting WUE and ~. due to ca. 40 % lower stomata! conductance in Quarrion than in 

Matong. 

This chapter describes measurements of instantaneous water-use efficiency (including 

soil fluxes), transpiration efficiency (plant only) and their components of photosynthesis 

and transpiration at leaf, canopy and paddock scales. The objective of this work was to 

examine the scaling of gas exchange from leaves to paddocks and to explore the extent 

to which canopy boundary layers reduce any advantage of having lower leaf 

conductance. 

Several canopy flux measurement techniques were compared: large ventilated 

chambers, Bowen ratio systems and lysimeters. All techniques had advantages and 

limitations. The chambers were limited by suitable site selection in a canopy of variable 

density, but provided day and night measurements of both water and C02 fluxes. The 

Bowen ratio system gave reliable C02 and water flux measurements during the day, but 

not at night. The lysimeters provided continual measurement of water-use, but not C02• 

Field measurements of leaf gas exchange demonstrated that the cultivars did have 

different stomata! conductance and similar rates of leaf photosynthesis. The differences 

in stomata! conductance between the cultivars were reduced late in the season when 

Matong had greater soil water deficits than Quarrion. 

Different stomata! conductances for the two crops at the leaf scale were reflected as 

different canopy conductances, but the difference between the canopy conductances was 

less than expected considering the differences in canopy leaf area. Differences in canopy 

transpiration between the two crops was further reduced due to the additional effects of 

the canopy boundary layer. Simple scaling of leaf photosynthesis by the leaf area was 

not reflected in the rates of gross canopy photosynthesis. 

The distinct advantage of Quarrion in transpiration efficiency (excluding soil fluxes) 

over Matong at the leaf level (24%) was substantially reduced at the canopy level (5% ), 

but nevertheless did result in more conservative total seasonal water-use (5%) and 

greater grain yield (23%) in 1990, a year with minimal rain after anthesis. 
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3.1. Introduction 

Agricultural production in many parts of Australia is limited by available water. This 

is particularly true of winter wheat crops, where grain yield is closely related to rainfall 

(French & Schultz, 1984 ). Improvements in the ratio of biomass production to crop 

water-use have much potential to increase grain yield (Passioura, 1977). Although 

research into water-use efficiency has continued for many years, little progress has been 

made (Tanner & Sinclair, 1983). This slow progress is partly attributable to the difficulty 

and cost of measuring water-use over an entire growing season. Use of the relationship 

between carbon isotope discrimination and water-use efficiency offers a cheap 

alternative, although application of this tool to crops has complications (Farquhar et al., 

1989b). 

Discrimination against 13C in plants (Li) has been shown to be related to the ratio of 

photosynthesis to transpiration of leaves (Evans et al., 1986) and to the growth and 

water-use of individual plants (Farquhar & Richards, 1984). This suggests that Li may be 

a useful tool in plant breeding programs for identifying cultivars with improved water­

use efficiency (WUE) (Farquhar & Richards, 1984 ). Field trials showed some ambiguity 

in the relationship between Li and WUE. In dry environments there was a negative 

correlation between Li and WUE, as in the glasshouse trials, while in wetter 

environments the relationship was positive (Condon et al., 1990; Condon & Richards, 

1993). Where changes in WUE were due to altered photosynthetic capacity the 

relationship between WUE and Li was similar in both glasshouse trials and field trials 

(Wright et al., 1988; Wright et al., 1993). It was speculated that where improvements in 

water-use efficiency were due to reduced stomata! conductance the benefits may be 

diminished at larger spatial scales due to the canopy boundary-layer (Cowan, 1988). 

Boundary layers of leaves and the canopy cause the humidity of the air to increase and 

the temperature to decrease, due to the transpiration, reducing the benefit of a reduction 

in stomata! conductance and causing a feedback on transpiration through these 

vegetation-atmosphere interactions (Jarvis & McNaughton, 1986; McNaughton & Jarvis, 

1991). Reduced stomata! control can lead to similar transpiration in plants with differing 

stomata} conductances. 

Little direct assessment has been made of stomata} control of evaporation from 

extensive vegetation, possibly due to the multi-disciplinary nature of such research. 

Indeed many researchers have found that evaporation is closely related to net radiation 
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(Penman, 1948; Priestley & Taylor, 1972), with no need to consider stomatal control at 

all. The degree of stomatal control of evaporation has been assessed indirectly by 

comparing evaporation from different types of vegetation (Denmead, 1969), comparing 

evaporation rates from periods with different water limitations (Tan & Black, 1976), 

measuring evaporation as canopy leaf area increased (Meinzer & Grantz, 1989), 

comparing evaporation before and after plant thinning (Whitehead et al., 1984; Jarvis, 

1993) and comparing evaporation from vegetation with different pathways of carbon 

metabolism (Baldocchi, l 994a). In all these experiments observed differences in 

evaporation were associated with changes in surf ace conductance. However, other 

changes also occurred to factors such as surface roughness and the weather, which 

makes it difficult to unequivocally confirm stomata! control of evaporation rate. 

Although, the aforementioned experiments confirm the theoretical analyses of 

evaporation, that show stomata! control of evaporation is reduced at larger spatial scales 

(Jarvis & McNaughton, 1986), it remains to be validated in actual experiments with 

direct changes in stomatal conductance in a range of vegetation. 

A multi-disciplinary project was established to assess the relationship between .1. and 

WUE in the field. Two cultivars of wheat, Matong and Quarrion, were grown in large 

paddocks. These cultivars had contrasting WUE and .1., due to ca. 40 % lower stomatal 

conductance in Quarrion than Matong. Water-use and biomass production over the 

entire growing season was discussed by Condon & Richards (1993). They found that 

differences in soil evaporation made a significant contribution to the crop WUE. Direct 

measurements of soil evaporation were pursued in a paper by Leuning et al., (1994). 

This experimental set-up provided a unique opportunity to directly assess the effect of 

stomatal conductance on canopy evaporation, where the only change was the stomatal 

conductance; canopy structure and weather would be the same. 

This chapter describes measurements of instantaneous water-use efficiency and its 

components of photosynthesis and transpiration at leaf, canopy and paddock scales. The 

objective of this work was to test the hypotheses that ( 1) stomata do contribute to the 

regulation of transpiration from canopies and (2) that although the canopy boundary 

layer may diminish the advantage of reduced stomatal conductance to transpiration 

efficiency, there is still an advantage at the canopy scale of selecting wheat cultivars that 

exhibit improved transpiration efficiency at the leaf level. 
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3.2. Experimental Methods 

Details of many aspects of the field trials and measurements were presented in 

Chapter Two. A brief overview is reiterated here. The field experiments were 

conducted at Wagga Wagga, NSW. The chosen cultivars, Matong and Quarrion were 

selected with contrasting WUE and Li, but similar in their developmental growth stages 

and canopy structure. The crops were sown on 28 May in 1989 and 22 May in 1990. 

Measurements of gas exchange were made throughout the growing season of 1989 and 

in the two weeks pre-anthesis and two weeks post-anthesis of 1990. 

Leaf gas exchange measurements were made with a Li-Cor 6200 portable 

photosynthesis system. Sections of the uppermost fully expanded leaves (only flag leaves 

in 1990) were selected for measurement that were perpendicular to the solar beam, to 

ensure activation of the photosynthetic enzymes and maximum stomata! opening. 

Measurements were made throughout the day to follow the diurnal trends. However, 

measurements were not possible until after 10:00 when the dew had evaporated. 

Large ventilated tents (2.3 m2) were used to measure gas exchange from sections of 

canopy. A tent was placed over a section of canopy that was judged to be representative 

of the whole canopy. There was some variability in the canopy density, due to different 

germination rates and weed infestation. The tents measured continuously for several 

days of a week in the same position. They were removed over the weekends and 

replaced the following week. If showers of rain occurred while the tents were in place, 

they were moved to a new location. 

Bowen ratio systems, with gas analysis for C02 gradients, were established in the 

centre of each paddock. Fetch was 130 m to the east and west and 100 m to the north 

and south. Differential gas analysers were used to measure both C02 and water vapour 

gradients. 

Fortnightly harvests of 0.5 m2 quadrats were used to measure leaf area index and 

biomass. The soil water profile was also measured fortnightly to determine total water­

use. 
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3.2.1. Analysis 

An important distinction needs to be made between gross and net fluxes, especially 

for evaluation of water-use efficiency by crops. In addition to transpiration through 

leaves, water is lost by direct evaporation from the soil. Benefits from increased 

transpiration efficiency can be greatly diminished by enhanced soil evaporation if greater 

transpiration efficiency is associated with lower canopy leaf area (Condon & Richards, 

1993). An evaluation of scaling up WUE needs to compare gross fluxes of 

photosynthesis and transpiration as these are under plant control, but also total or net 

fluxes of evaporation including soil evaporation and net C02 flux including carbon 

simultaneously lost by respiration. 

Measurements of fluxes by both tents and Bowen ratio systems are net .fluxes. 

Transpiration is augmented by soil evaporation, while C02 uptake by canopy 

photosynthesis is reduced by C02 efflux from respiration of both soil and the canopy. 

However, there are subtle differences between the soil fluxes in tents and those measured 

by Bowen ratio systems. Over pressure in chambers can suppress soil C02 fluxes 

(Kanemasu et al., 1974) and possibly also water vapour fluxes. Enhanced turbulence, 

due to mixing fans in the tents, may increase the rate of soil evaporation compared to the 

undisturbed soil evaporation outside the tent. These effects were considered m 

calculation of gross canopy photosynthesis and transpiration as described below. 

3.2.1.1. Canopy and Soil Respiration 

Tent measurements of C02 fluxes at night were used to estimate total canopy 

respiration. These data were averaged over periods of one hour and found to be 

temperature dependent (see Chapter Seven). Respiration during the day was estimated 

from the night respiration measurements taking into account the higher temperatures 

during the day. Canopy respiration was reduced by 15 % during the day, to take into 

account the effect of light on the respiration of photosynthetic tissues (Graham, 1980; 

Brooks & Farquhar, 1985; Kirschbaum & Farquhar, 1987). Independent measurements 

of soil respiration were made with a chamber attached to a Li-Cor 6200. They were also 

temperature dependent (see Chapter Seven). 

Gross photosynthesis in the tents was calculated by adding the canopy respiration to 

the measured net canopy flux. Paddock gross photosynthesis was calculated from the 
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Bowen ratio data with the extrapolated canopy respiration and an additional 30 % of the 

soil respiration to take into account the suppression of soil fluxes in the tent. 

3.2.1.2. Soil Evaporation 

Soil evaporation was estimated over intervals of two weeks, using the method of 

Cooper (1983). This involved measuring changes in the soil water profile both beneath 

the crop and under bare soil. Measurements of light interception by the canopy were 

used to then convert bare-soil evaporation to soil evaporation from beneath the crop. 

Measurements of pan evaporation were used as a scaling factor to interpolate to obtain 

daily soil evaporation. Diurnal variation of soil evaporation was assumed to be in 

proportion to the calculated equilibrium evaporation from the soil beneath the canopy 

while the soil surface was wet (Black et al., 1970; Ritchie, 1972). Cumulative 

evaporation and rainfall was used to model the water content of the top 5 cm of soil. As 

the soil surface dried below a threshold water content the evaporation rate from the soil 

was reduced in proportion to the surface moisture content. Soil evaporation from inside 

the tents was assumed to be the same as outside the tents, since the enhanced turbulence 

in the tent would tend to compensate for the chamber pressure suppression of soil fluxes. 

3.2.1.3. Canopy and Surface Conductance from Bowen Ratio 

Data 

Canopy conductance, Ge, was calculated by inverting the Penman-Monteith (PM) 

equation, 

(3.1) 

where E is the change of latent heat of saturated air with a change in sensible heat as 

temperature changes (sLM/(PCP)), raH is the aerodynamic resistance to turbulent transfer 

of sensible heat between the surface and the reference height (1.0 m above the canopy), 

calculated from sonic anemometer measurements and stability corrections (see Chapter 

Five), Q is the available energy (R-G) absorbed by the canopy, LM is the molar latent heat 

of evaporation, Dr is the water vapour concentration deficit of the air at the reference 

height, P is atmospheric air pressure and Ee is the measured canopy transpiration (total 

60 



Water-Use Efficiency of Leaves and Canopies 

evaporation less soil evaporation, ET - Es). Surface conductance, Gs, was calculated 

from the PM equation using ET in place of Ec. 

3.2.1.4. Canopy and Surface Conductance from Tent Data 

Inside the ventilated tent, gradients typical of a normal canopy, are prevented from 

developing by mixing fans, rendering calculation of a suitable gaH for the PM equation 

difficult. The transpiration rate can also be related to an equation describing the flux by a 

concentration gradient and resistances, 

(3.2) 

where D1 is the leaf-to-air vapour concentration difference between the saturated vapour 

concentration at the measured canopy leaf temperature and the water vapour 

concentration of the air in the tent. This equation was rearranged to determine canopy 

conductance in the tents as, 

(3.3) 

Canopy boundary layer conductance, gaH• was set at 1.5 mol.m-2.s-1 by comparing with 

the conductances obtained from the Bowen ratio data for both the Matong and Quarrion 

tents. Surface conductance, Gs, was calculated by using total evaporation, ET> in place 

of Ec in eq. 3.3. 
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3.3. Results and Discussion 

Leaf gas exchange measurements in the field demonstrated that stomatal conductance 

of Quarrion was on average 40 % lower than stomatal conductance of Matong (figure 

3.1). Late in the season, stomatal conductance declined as the crop matured in both 

cultivars, but was more marked in Matong so that stomatal conductance was similar in 

both crops. Leaf photosynthesis was similar in both crops (figure 3.1) so that the ratio of 

intercellular to atmospheric C02 partial pressures (p/pa) was lower in Quarrion than 
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Figure 3.1 Comparison of spot measurements of stomata! conductance (g), leaf 

photosynthesis (A) and the ratio of intercellular to atmospheric C02 partial 

pressures (p/p8 } on fully expanded sunlit leaves at the top of the canopy of 

cultivars Matong and Quarrion in field crops throughout the 1989 season. 

Standard errors are shown as error bars. 
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Matong. 

Canopy leaf area index (Le) is the dominant scaling factor between leaves and 

canopies, at least until a closed canopy forms. While canopies are open, soil evaporation 

can dominate total evaporation, unless the soil surface is dry and the crop is growing on 

stored soil water. At Wagga Wagga rain occurred throughout the growing season so 

soil evaporation remained a large component until canopy closure (Condon & Richards, 

1993). 

In 1989 poor germination and low vigour of the Quarrion crop resulted in a 

significant difference in the canopy leaf area of the two crops (figure 3.2). 
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Figure 3.2 Canopy leaf area index (Le) of the Matong and Quarrion crops in 1989. 

The experiment was repeated the following year (1990) using the same two cultivars, 

but with the paddocks swapped. In this second year the sowing rate was increased 25% 

in the Quarrion crop, in an attempt to match the canopy leaf area of the two crops more 

closely. However, despite matching leaf area of the crops early in the season, maximum 

leaf area of the crops was still different (figure 3.3). 
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Figure 3.3 Canopy leaf area index (Le) of Matong and Quarrion in 1990. 

Total biomass of Matong was greater than that of Quai-rion during October (figure 

3.4). However, grain yield was 335 g.m-2 in Matong compared with 413 g.m-2 for 

Quarrion. The more conservative water-use by Quarrion allowed grain filling to 

continue longer. 
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Figure 3.4 Partitioning of the crop biomass into stems, green leaves, dead leaves 

and heads for the Matong (left) and Quarrion crops (right) in 1990. 
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Differences in stomatal conductance between the cultivars were not always apparent 

in the second cropping year (figure 3.5). There was less rain and greater soil water 

depletion during 1990, which caused somewhat greater reductions in stomatal 

conductance of Matong than Quarrion, as the latter had more conservative water-use. 

On 23 October 1990 there was 33 mm of rain which restored the expected cultivar 

differences in stomatal conductance. Leaf photosynthesis was lower in Matong than 

Quarrion, except for the period immediately after rain, when they had similar rates. 

Similarly, P/Pa was lower in Quarrion when well watered (24-26 Oct), but similar to 

Matong under conditions of soil water deficit. 
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Figure 3.5 Comparison of spot measurements of stomata! conductance (g), leaf 

photosynthesis (A) and the ratio of intercellular to atmospheric C02 partial 

pressures (p/p8 ) in field crops during October 1990. Standard errors are shown as 

error bars. 
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3.3.1. Comparison of Canopy Flux Measurement Techniques 

Independent measurements by the tents, Bowen ratio systems and lysimeters in 1990 

allowed a comparison of techniques and an evaluation of errors in measuring canopy 

photosynthesis and WUE. Weather conditions during 1989 were more cloudy with less 

clear days on which to make direct comparisons. 

3.3.1.1. Comparison of Tents and Bowen ratio data with 

Lysimeters 

Data from the tents and Bowen ratio systems were averaged to compare with hourly 

evaporation data from the lysimeters. Measured diurnal variation of evaporation was 

similar with the lysimeters, Bowen ratio systems and tents (figure 3.6). The Bowen ratio 

data at night were not used due to the difficulty of getting accurate measurements of the 

available energy and potential violation of the similarity assumption of equal turbulent 

diffusivities for heat and water vapour in stable conditions. The tents operated during 

the night, but the presence of the chamber and the air circulation prevented significant 

dew formation, which was recorded on the lysimeters as negative evaporation rates. 
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Figure 3.6 Comparison of diurnal variation of total evaporation measured by the 

lysimeters, Bowen ratio systems and tents in the Matong and Quarrion crops on 

the 12-13 October 1990. 
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For a more critical comparison, I have selected data from days between 12 October 

and 1 November when measurements were made at the leaf, canopy and paddock scales. 

During the period between 24 - 26 October there was good agreement between data of 

evaporation from the tents and the lysimeters (figure 3.7). On other days the agreement 

was poor, due to either underestimation by the lysimeters or overestimation by the tents. 
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Figure 3. 7 Comparison of total evaporation data from tents and lysimeters for the 

Matong and Quarrion crops in 1990. 

A similar pattern was observed in the comparison of the Bowen ratio data with the 

lysimeters (figure 3.8), which suggests that evaporation from the lysimeters was not 

representative of the crop. The lysimeter crop was hand sown and had better seed 

germination and therefore higher plant density than the surrounding paddock. This 

resulted in faster water-use in the lysimeters early in the season and subsequent more 

severe water stress later in the season, which was observed as lower evaporation rates 

except for the days following rain (24- 26 Oct). Rate of evaporation from the lysimeters 

was greater than from the Bowen ratio measurements early in the season (data not 

shown). 
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Figure 3.8 Comparison of total evaporation data from Bowen ratio systems and 

lysimeters for the Matong and Quarrion crops in 1990. 

3.3.1.2. Comparison of Tents with Bowen ratio 

Net Canopy Photosynthesis, Total Evaporation and Surface 

Conductance (Net Fluxes) 

A comparison was made between the tent and the Bowen ratio data which allowed 

C02 flux measurements to be evaluated as well as evaporation data which were used in 

the comparison with the lysimeters. The Bowen ratio data were recorded as half hour 

running averages at 15 minute intervals. The tent data were recorded every 12 minutes 

and running averages of three measurements were used for this comparison. Surface 

conductance was calculated from the Bowen ratio data by inverting the Penman­

Monteith equation. In the tents surface conductance was calculated from the measured 

evaporation rate, the leaf-to-air vapour concentration difference and an aerodynamic 

conductance of 1.5 mol.m·2.s·1, estimated by comparison with the Bowen ratio fluxes. 

Both the tents and the Bowen ratio systems measured diurnal variations in net 

canopy C02 fluxes (figure 3.9). Bowen ratio data of C02 fluxes at night were not used, 
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for the reasons given earlier. Tent C02 flux data at night were used, although the data 

were sometimes erratic with the build up of C02• Bowen ratio net C02 fluxes were 

typically lower than the tent measurements due to suppression of soil respiration by over 

pressure in the tents, as discussed in the Methods section. 
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Figure 3.9 Diurnal variation of net canopy C02 fluxes measured with the tent and 

Bowen ratio systems of the Matong and Quarrion crops on 12-13 October, 1990. 

Comparing data from the days selected above, measured net C02 fluxes from both 

the Matong and Quarrion crops were greater in the tent data than the Bowen ratio data 

(figures 3.10 & 3.11). There was better agreement between the tent and Bowen ratio 

system in the evaporation data; the tent measurements being slightly lower in Matong 

and slightly higher in Quarrion than the Bowen ratio data. There was poor agreement in 

the surface conductance data. Water-use efficiency (ratio of net C02 flux to total water­

use) was greater in the tents than the Bowen ratio data. 
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Comparison of Techniques: Ma tong 
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Figure 3.10 Comparison of the Bowen ratio and tent measurements of net 

photosynthesis (AcNet>• total evaporation (E~. surface conductance ( G5 ) and 

water-use efficiency (AcNelEr) for the Matong crop in 1990. The dashed lines are 

a 1 : 1 relationship. 

There are several possible explanations for the differences in flux estimates between 

the tents and the Bowen ratio systems. Firstly the measurements are made at different 

spatial scales. The tent was placed over a 2.3 m2 patch of canopy, while the Bowen ratio 

system measures fluxes that have evolved from an area of canopy up to 100 m distance. 

If the small patch of canopy in the tent was not representative of the entire paddock then 

the fluxes would be different. The Matong crop had a uniform plant density and 

therefore a homogeneous distribution of leaf area, whereas the Quarrion crop had a 

much more variable plant density with several patches that were nearly bare. The large 
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differences between the tent and Bowen ratio fluxes observed in the Quarrion crop are 

probably partly explained by the patch of canopy in the tent having more leaf area than 

the average of the entire paddock. It is unlikely that this would explain the observed 

differences in the Matong crop; other explanations are required. 

Comparison of Techniques: Quarrion 
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Figure 3.11 As in figure 3.10, but for the Quarrion crop. 

The second explanation for the differences between the tent and Bowen ratio data is 

the effect of the chamber. Both the soil fluxes and the environment are affected by the 

chambers. 

Pressurisation of chambers over soil is known to cause a reduction in soil C02 fluxes 

(Kanemasu et al., 1974). The tents used in this experiment had air forced through at 200 
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L per minute, and so would have reduced soil C02 efflux compared with the undisturbed 

net C02 fluxes measured by the Bowen ratio system. Tests were conducted with these 

tents over bare soil, in which a second fan was used to exhaust air. When both fans were 

operating, with the speed adjusted so that the tent walls were slack, the C02 flux was 30 

% greater than when the tent was pressurised. When only the exhaust fan was operating, 

so that the tent had a negative pressure compared with the free atmosphere, soil C02 flux 

was increased a further 30 %. It was concluded that when these tents were pressurised 

the soil C02 fluxes were reduced by 30 % . The flux of water vapour from the soil was 

assumed to be similarly affected by the chamber pressure. 

The environment inside the chamber is altered compared with the ambient conditions; 

air temperature, humidity and the light quality all change. The amount of diffuse light 

was examined in detail and is discussed further in a later section. Changes to the air 

temperature and humidity were kept minimal by having high rates of air flow through the 

chambers (turnover time= 16s). The change in air composition was used as the basis for 

flux measurements in the tents, so that selection of the flow rate was a trade off between 

increasing changes to the air, and decreasing resolution of flux measurements. The draw 

down of C02 concentration was up to 1.5 Pa at maximum rates of canopy 

photosynthesis, whereas the humidity increase was up to 0.4 kPa. Air temperature 

increased inside the tent by up to 4°C, though more typically 1-2°C, above air 

temperature outside and was related to the sensible heat flux and (figure 3.12). 

The lack of agreement between the surface conductance calculated from the tent and 

Bowen ratio data is not surprising given the different assumptions involved in the 

calculations and the effect of the chambers on the soil fluxes. Suppressed soil 

evaporation in the tents would result in lower calculated surface conductances in the 

tents as was observed. 
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Figure 3.12 Increase of air temperature (dT8) inside the Matong tent was 

correlated with the sensible heat flux (H). Linear regression shown. 

Gross Canopy Photosynthesis, Transpiration and Conductance 

Although it is possible to make a simple comparison of net fluxes measured by the 

tents and the Bowen ratio system, it is apparent that differences in the techniques, 

particularly with respect to soil fluxes complicate such a comparison. Independent 

measurements of soil respiration and soil evaporation allowed the calculation of gross 

canopy photosynthesis and canopy transpiration. With the soil components removed 

gross photosynthesis and transpiration were used to compare the tent and Bowen ratio 

techniques. 
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There was better agreement between data from the tents and Bowen ratio systems 

when the different soil fluxes in the two techniques were taken into account to compare 

gross photosynthesis and canopy transpiration than when net fluxes were compared 

(figures 3.13 & 3.14 cf. figures 3.10 & 3.11). 

Comparison of Techniques: Matong (Gross Fluxes) 
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Figure 3.13 Comparison of tent and Bowen ratio data of gross canopy 

photosynthesis (A}, canopy transpiration (E}, canopy conductance (G} and 

transpiration efficiency (A/E} for the Matong crop in 1990. Canopy and soil 

respiration was added to the measured net canopy C02 flux. Soil evaporation was 

deducted from the measured total evaporation. The dashed lines are a 1 :1 

relationship. Data from the well watered conditions of 24-26 October are shown as 

solid dots. 
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Gross canopy photosynthesis was still greater in the tents than in the Bowen ratio 

data, suggesting that the different soil fluxes did not account for all the difference 

between the techniques and that the effects of more diffuse light and higher temperature 

and humidity in the tents enhanced the gross canopy photosynthesis. There remained a 

difference in the canopy conductance calculated from the tents and the Bowen ratio data, 

even after soil fluxes were deducted, but there was much better agreement between the 

two techniques. Transpiration efficiency remained greater in the tents than from the 

Bowen ratio data, though the difference was reduced compared to the comparison of 

water-use efficiency. 
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Figure 3.14 As in figure 3.13, but for the Quarrion crop. 
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3.3.1.3. Scattering of light by the tent 

Another explanation for higher C02 fluxes in the tents compared with the Bowen 

ratio system, is the greater proportion of diffuse light in the tents than outside. Light is 

absorbed, scattered and reflected by the plastic walls of the tent, decreasing the total 

amount of light but increasing the proportion of diffuse light. Diffuse light is absorbed 

more efficiently by canopies resulting in higher rates of photosynthesis (Kumura, 1968). 

These effects were examined by measuring the proportion of diffuse light both inside and 

outside the tents as described below. 

The plastic walls of the tent affected the proportion of beam and diffuse light by 

absorption and scattering. I quantified these effects by determining a transmission 

coefficient ( 't1) and a coefficient of forward scattering by the walls if w) from 

measurements of beam and diffuse light both outside and inside the tent (figure 3.15). 
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Figure 3.15 Measurements of beam and diffuse light on 5 Nov. 1991 both outside 

{left) and inside the tent (right). Each point is the mean of three measurements. 

Beam intensity was calculated as the difference between total and diffuse light. 

Total PAR was measured with a PAR sensor (Sunfleck Ceptometer, Decagon 

Devices Inc., Pullman Washington). A black cardboard disk 20 cm in diameter was hand 

held at approx. 1.5 m to occult the sun from the sensor to obtain a measure of the diffuse 

PAR. Since simultaneous measurements both in the tent and outside were not possible, 

it was necessary to adjust the light intensity data for the time delay between 
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measurements, particularly at low light intensities. This was achieved by calculating the 

rate of change of light intensity over a half hour period, which was used to adjust for the 

time delay. Beam PAR was calculated as the difference between total and diffuse PAR 

after allowing for the time delay between measurements. No correction was made for 

the sky radiance blocked by the shading device, since it would have been very small. 

In this analysis I define the tent transmission coefficient ('tt) as the ratio of beam light 

in the tent (lbt) to beam light outside (lb): 

(3.4) 

This coefficient varies with the angle of incidence of the beam with the wall of the tent, 

since reflection increases as the angle decreases. 

The transmission coefficient of diffuse light is assumed equal to that of beam light at 

the same angle, although it should more correctly be defined as the integral of radiance 

from all directions by the transmission coefficient of each direction summed over the 

entire sky. Light intercepted by the plastic is reflected out of the tent, scattered into the 

tent or absorbed. Light scattered into the 1ent is included in the ,diffuse light (ldt) as the 

second part of the equation: 

(3.5) 

where fw is the fraction of light intercepted by the tent walls scattered into the tent. An 

expression for this fraction is obtained by rearranging the above equation. 

(3.6) 

Values for the transmission coefficient ('tr) were affected by solar elevation (figure 

3 .16). Beam light reached the sensor through the side wall of the chamber below a solar 

elevation of 22°, as indicated by the shadow of the frame cast across the sensor each 

morning and afternoon, while above 22° beam light reached the PAR sensor after 

entering the chamber through the top panel. Since the chamber was aligned north, the 

angle of incidence of beam light on the chamber top was calculated as 

77 



Chapter Three 

L(beanl'top) = ~ -arcsin( 
27 

cos<l>s)• 
167 

(3.7) 

where the fraction 27 /167 is the sine of the slope of the chamber top, and ~ is solar 

elevation and <l>s is solar azimuth. When the beam reaches the sensor after entering the 

chamber through the wall of the tent, the sine of the angle of incidence is defined as; 

High solar elevation 

Low solar elevation 

Chamber 
~ i::;:;> ) West 

North 

Figure 3.16 Diagram of tent with the beam path from the sun to PAR sensor 

highlighting the angle of incidence of the solar beam with chamber walls at high 

and low solar elevation. 

sin L( beam~sitte) = cos~ sin <I> s . 

The sine of angle of incidence with the front panel is 

(3.8) 

(3.9) 

Calculated values for the coefficients are plotted (figure 3.17) as a function of the 

sine of the angle of incidence of the beam path with the chamber walls. Considering the 
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geometry of the chamber (figure 3 .16), 't, was best represented by a function of the angle 

of incidence of light on the chamber panels as in the equation; 

't1 = exp(-0.1811/(sin(LbeamA panet)-0.2584)) 

(for sin(LbeamApanet) < 0.27, 't1 =0) 
(3.10) 
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Figure 3.17 Tent transmission coefficient, tp and coefficient of forward scattering 

by the tent walls, fW' calculated using eqs. 3.4 & 3.6 from data in figure 3.15. 

Circled data points were excluded from the curve fitting. 

where values of the coefficients were found by least squares fitting. The coefficient f w 

was assumed unaffected by solar elevation and the mean value (excluding two extreme 

values) was calculated as 0.536. 

Combining the expressions for transmission and scattering by the tent (eqs. 3.4 & 

3.6) with the definition of fraction of diffuse light produces an expression for the fraction 

of diffuse light in the tent (f,) as a function of the fraction of diffuse outside (f0 ). 

f, - f + ( 1 - f ) JJ 1 - 't t) 
,- 0 0 (1-J.) !. 't, w + w 

(3.11) 
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Modelled values of f 0 and.ft are compared with data collected on 5 Nov. 1991 (figure 

3.18). This comparison shows that the model accounts for much of the change in diffuse 

light as solar elevation varies. 

However it is apparent in figure 3.18 that eq. 3.11 gives an abrupt change inf, at sin~ 

= 0.4, due to the altered beam path though the tent and the calculation of 'tt as a function 

of beam-panel angle (eq. 3.10). While this is true for the position of the sensor, it is not 

representative of the average light across the whole tent. 
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Figure 3.18 Comparison of the model (lines) of fraction of diffuse light outside, f0 , 

and inside the tent, fr with data (symbols) for 5 Nov. 1991. 

Average ft for the entire tent was calculated by determining an effective 'tt for the tent 

from the transmission coefficient of each panel and their contribution of light. Effective 

panel projection (Ps, Pt, P1; side, top and front) was determined from panel dimensions, 

crop height (1.0 m) and the angle of beam incidence on each panel (eqs. 3.7 - 3.9) as; 

P, = (0. 52+0.25)/2x1.65 x sin L(beamAside) 

P, = 1. 4 x 1. 65 x sin L(beamAtop) 

pf= 0.25x1.4 x sin L(beamAfront) 
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The light contribution from each panel was calculated from their projection and their 

transmission coefficient (P/t,8), so that the effective 't, was calculated from the weighted 

average transmission coefficient of each panel ('t1s, 't11, 'tu) side, top and front) as in the 

equation; 

(3.13) 

The average tent transmission is used in eq. 3.11 to calculate the average fraction of 

diffuse light. An example of the application of these calculations is presented in figure 

3.19 as the fraction of diffuse light outside the tent, fraction of diffuse light at the PAR 

sensor and the average fraction of diffuse light in the tent. 
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Figure 3.19 Fraction of diffuse light outside the tent, f
0

, at the PAR sensor 

(ftsensoJ and the average of the tent (ftavg), calculated using the model of light 

scattering by the tent. The discontinuity in the tent diffuse fraction is associated 

with a change in the path of beam light entering the tent through the side panel to· 

entering the tent through the top panel. 

It is necessary to use a model of radiation penetration and canopy photosynthesis to 

determine the effect of increased diffuse light on photosynthesis in the tents. The above 
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analysis of light scattering by the tent is used in subsequent chapters that examine 

modelling of canopy photosynthesis. 

In conclusion, the comparison of measurement techniques has shown that all 

techniques have advantages and disadvantages. Lysimeters made continuous 

measurements of evaporation, but different crop densities on the lysimeters compared to 

the paddock caused an underestimate in the measured fluxes as soil water content 

declined. Bowen ratio systems provided reliable flux measurements of C02 and water, 

but only during the day. Tents provided flux measurements day and night, but were 

affected by higher air temperatures and humidity in the tent and a greater proportion of 

diffuse light. It is unlikely that the differences observed between the tent and Bowen 

ratio data for the Quarrion crop were all attributable to the effect of the chambers on the 

environment. It is more likely that the patch of crop in the Quarrion tent did indeed have 

a greater leaf area than the average of the whole Quarrion paddock. 
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3.3.2. Comparison of Crops 

Comparison of canopy fluxes between the two crops was made with both the tent 

data and the Bowen ratio data for both the net fluxes and gross photosynthesis and 

transpiration. Comparison of the crops with the net tent data indicated that the Quarrion 

crop had greater C02 and water fluxes than the Matong crop (figure 3.20), whereas the 

Bowen ratio net flux data indicated that the fluxes from both crops were similar (figure 

3.21). This is explained by the earlier observation that the Quarrion tent fluxes were 

greater than the Quarrion Bowen ratio fluxes, which was probably due to a denser patch 
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Figure 3.20 Comparison of net canopy C02 flux (AcNet>. total evaporation (Er), 

surface conductance ( G5) and water-use efficiency (AcNelEr) of the Matong and 

Quarrion crops measured with the tents. Data from the well watered conditions of 

24-26 October are shown as solid dots 
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of canopy in that tent. 

Surface conductance in the tents was similar for both crops for the period of 24-26 

October, but was greater for Matong than Quarrion in the Bowen ratio data for the same 

period (figures 3.20 & 3.21). The ranking of cultivars in the surface conductance data· 

from the Bowen ratio was in agreement with the observations of leaf conductance (cf 

figure 3.5), whereas that from the tent data was not. Similarly, the tent data indicated 

similar water-use efficiency for both crops for the 24-26 October, while the Bowen ratio 

data showed Quarrion more efficient than Matong. 
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Figure 3.21 Comparison of canopy C02 flux, evaporation, surface conductance 

and water-use efficiency of the Matong and Quarrion crops measured with the 

Bowen ratio systems. Data from the well watered conditions of 24-26 October are 

shown as solid dots. 
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Comparisons of gross photosynthesis and transpiration for the two crops gave similar 

conclusions to the comparisons of net C02 flux and evaporation (figures 3.22 & 3.23 cf. 

figures 3.20 & 3.21). The tent data indicated greater gross canopy photosynthesis and 

transpiration from Quarrion than Matong for the period of 24-26 October, but the 

Bowen ratio data indicated similar gross photosynthesis and slightly greater transpiration 

from Matong than Quarrion. 
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Figure 3.22 Comparison of gross canopy photosynthesis (AJ, transpiration (Ee), 

canopy conductance (Ge) and transpiration efficiency (A/EJ of the Matong and 

Quarrion crops measured with the Bowen ratio systems. Data from the well 

watered conditions of 24-26 October are shown as solid dots. 
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As with the surf ace conductance the canopy conductance was similar for both crops 

in the tents, but greater for Matong than Quarrion in the Bowen ratio data for the period 

of 24-26 October. Transpiration efficiency was greater for Matong than Quarrion in the 

tents and the reverse in the Bowen ratio data. 
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Figure 3.23 As in figure 3.22, but comparing Bowen ratio measured fluxes. 
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3.3.2.1. Scaling Conductance and Evaporation 

Diurnal variation of the scaling of conductance from leaves to canopies was 

examined in more detail; two contrasting days are presented in figure 3.24. Different 

stomatal conductances in the two cultivars at the leaf level did translate into different 

canopy conductances, although the difference expressed as a percentage was reduced. 

For example, on 25 October leaf conductance of Quarrion was 46% lower than Matong, 

while canopy conductance of Quarrion was 31 % lower than Matong. When the ranking 

of the cultivars in terms of their leaf conductance was reversed on the 30 October, a 

similar reversal was also observed in the canopy conductance. Precise conclusions 

should not be made about the scaling of conductance from this data, as there is 

considerable uncertainty in the canopy conductance data derived from the Penman­

Monteith equation, which is examined further in Chapter Five. 
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Figure 3.24 Comparison of the diurnal variation of leaf conductance and canopy 

conductance calculated from the transpiration rate measured with the Bowen ratio 

system and the inverted Penman-Monteith equation on the 25 October (left) and 

30October1990 (right) for the Matong (-)and Quarrion ( ...... )crops. 

The diminished difference between the cultivars in canopy conductance occurred 

despite a greater leaf area in the Matong than the Quarrion canopy (2.4 cf. 1.7 m2.m-2 on 

25 Oct. and 1.8 cf. 1.25 m2.m-2 on 30 Oct. or 30% less leaf area in Quarrion). On the 25 

October lower canopy conductance of Quarrion resulted in 7% less transpiration over 
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the whole day compared to Matong, which was offset by 26% more soil evaporation 

(E/Er = 20% and 15%, for Quarrion and Matong respectively) so that total evaporation 

was 2 % lower. On the 30 October the difference in the canopy conductance (figure 

3.25) resulted in 23% more transpiration over the whole day from Quarrion than 

Matong, and 21 % more total evaporation since soil evaporation was a much smaller 

component (E/Er= 3% and 5%, for Quarrion and Matong respectively; soil evaporation 

was calculated to be 15% greater from Matong than Quarrion on 30 October, because 

the soil surf ace of Matong had not dried as rapidly as the more exposed soil beneath the 

Quarrion crop). These data clearly demonstrate the effect of differences in leaf stomatal 

conductance on canopy transpiration, yet it is unclear why the differences are reduced 

when comparing the cultivars at the canopy scale. 
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Figure 3.25 Diurnal energy balance of the Matong (-)and Quarrion (·····)crops 

on the 25 October (left) and 30 October 1990 (right): Rn - net radiation, G - ground 

heat flux, H - sensible heat, LE - latent heat, D - vapour pressure deficit. 
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It is also apparent that the atmospheric environment was altered by the energy 

balance of the crop so that the saturation deficit of the air above Quarrion was lower 

than the deficit above the Matong crop on the 30 October when Quarrion's transpiration 

rate was substantially greater than Matong's. This interaction between the vegetation 

and the atmosphere is explored further in a later chapter. 

Simple scaling of leaf conductance by the leaf area index to obtain canopy 

conductance was inadequate compared to the observations. For example, on 25 October 

the ratio of Quarrion to Matong for leaf conductances was 0.54 and the ratio of leaf 

areas was 0.71, which combined is a ratio of 0.38, whereas the ratio of measured canopy 

conductances was 0.69. While such simple scaling was not expected to give reliable 

estimates of canopy conductance, because leaves deeper in the canopy would have lower 

conductances, it was expected that the ratio of the conductances would be scaled from 

leaves to canopies by the leaf area. There are several explanations for the inadequacy of 

this simple scaling. Firstly, the canopy conductance calculated from the Penman­

Monteith equation has been shown, theoretically, to be different from the leaf-area 

weighted sum of the individual leaf conductances (Raupach, 1995; McNaughton, 1994). 

McNaughton (1994) suggested that weighting individual leaf conductances by the net 

radiation distribution as well as leaf area was required for integrating to the canopy scale; 

however I have demonstrated in a later chapter that radiation weighting made little 

difference to the total canopy conductance compared with the simpler leaf area 

weighting, as was also reported by Leuning et al. (1995). 

Another problem with canopy conductance calculated from the Penman-Monteith 

equation is the sensitivity of the evaporation to canopy conductance. Canopies with 

small roughness elements such as wheat canopies can be aerodynamically decoupled 

from the free atmosphere so that evaporation rate is mostly driven by the available 

energy and is relatively insensitive to canopy conductance (Jarvis & McNaughton, 1986). 

When data from such smooth canopies are used to infer the canopy conductance any 

small errors in the evaporation data are propagated into larger errors in the canopy 

conductance. This makes the evaluation of scaling difficult, since there is potentially 

large error in the calculated canopy conductance. These errors are examined further in a 

later chapter. 

Another complication in the comparison of leaf and canopy conductances presented 

here is the sampling of leaves for the leaf data; only sunlit leaves at the top of the canopy 
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perpendicular to the sun's rays were sampled. It is possible that the ratio of 

conductances between the two cultivars was not the same for older leaves and for leaves 

receiving less light deeper in the canopy. 

3.3.2.2. Scaling Photosynthesis 

Scaling of photosynthesis from leaves to canopies was examined for the same two 

days (figure 3.26). On 25-0ctober leaf photosynthesis was the same for both cultivars, 

which was reflected in the same rates of gross canopy photosynthesis. In contrast, on 

30-0ctober leaf photosynthesis of Matong was lower than that of Quarrion and this was 

also reflected at the canopy scale. 
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Figure 3.26 Comparison of diurnal variation in leaf (symbols) and gross canopy 

photosynthesis of the Matong (-) and Quarrion (·····) crops on the 25 October 

(left) and 30 October 1990 (right). 

As with the scaling of conductance, photosynthesis was not simply scaled by the 

combined ratio of leaf photosynthesis of the two crops and the ratio of the canopy leaf 

areas. On the 25 October the Quarrion canopy had 30% less leaf area and similar rates 

of leaf photosynthesis, yet both crops had similar gross canopy photosynthesis. On 30 

October the ratio of Quarrion to Matong in leaf photosynthesis was 2.3 and the ratio of 

the leaf areas was 0.69, which combined is 1.6, while the ratio of gross canopy 

photosynthesis was 1.4. While this is a reasonable match, there are obviously other 

factors involved in scaling up photosynthesis in addition to canopy leaf area. The 
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arguments given above for the problems in scaling of conductance also apply to scaling 

photosynthesis. 

An alternative explanation for the similar rates of gross canopy photosynthesis from 

both crops when the leaf area of Matong was 30% greater than Quarrion's, is that the 

broadleaf selective herbicide (lgran) that was applied to the crops to control weeds 

impaired photosynthesis of leaves in Matong more than Quarrion. The spray was applied 

on August 29, so that leaves lower in the canopy would be affected but the flag leaf 

which would have emerged later would not be affected. Measurements of flag leaf 

photosynthesis would then not be representative of the whole canopy, if this were the 

case. Measurements of canopy C02 flux after the spray application were lower than C02 
flux measurements before the spray, though no leaf gas exchange data were available for 

this period. Indeed, it was surprising that on the 12 October the Matong canopy, with a 

leaf area of 3.5 m2.m-2, had a net C02 flux of only 31 µmol.m-2.s-I even though 

conditions were favourable for high rates of photosynthesis (PAR= 2200 µmoI.m-2.s-1, 

D = 0.8 kPa, Ta= 16 °C). 

3.3.2.3. Scaling Transpiration Efficiency 

Transpiration efficiency of both crops was very similar despite expectations based on 

differences at the leaf scale (figure 3.27). On 25 October the transpiration efficiency of 

Quarrion was on average 49% greater than Matong at the leaf level, but only 5% at the 

canopy scale, while on the 30 October Quarrion had 24% greater transpiration efficiency 

than Matong but on average only 16% greater at the canopy level. Transpiration 

efficiency on the 25 October was higher than on the 30 October, due to higher air 

temperatures and hence greater leaf-to-air vapour pressure difference on the later day. 

The poor extrapolation of differences between the cultivars in transpiration efficiency 

from the leaf to canopy level is mainly a reflection of the insensitivity of canopy 

transpiration to canopy conductance, which is discussed further in later chapters. 

However, despite the diminished returns at the canopy scale there still was an advantage 

in the transpiration efficiency of Quarrion over Matong, which over the whole growing 

season could give a distinct advantage to the cultivar with more conservative water use. 
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Figure 3.27 Diurnal variation of transpiration efficiency at the leaf (symbols) and 

canopy (lines) scales for the Matong (-) and Quarrion (· .... ) crops on the 25 

October (left) and the 30 October 1990 (right). 

3.3.2.4. Seasonal Water Use 

Total water-use was greater from the Matong crop than the Quarrion crop in both 

years (figures 3.28 & 3.29) (Condon & Richards, 1993). In 1989 much of the water 

conserved from lower rates of transpiration in the Quarrion crop was lost as additional 

soil evaporation. This occurred because of the lower leaf area in the Quarrion crop 

(figure 3.2), which was a result of poor germination and low early vigour. Over the 

whole season the Matong crop had 21 mm more total water-use than Quarrion and 67 

mm more transpiration. 

In 1990 higher sowing rates were used in Quarrion to get the early leaf area of the 

two crops to match. However, the leaf area of Quarrion remained lower than that of 

Matong (figure 3.3). Again the reduced transpiration of Quarrion was offset by higher 

soil evaporation. At harvest total cumulative evaporation from Matong was 25 mm 

greater than from Quarrion, but 43 mm more transpiration. 
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Figure 3.28 Cumulative water-use, transpiration and soil evaporation by the 

Matong (--) and Quarrion (···· .. ) crops during 1989. Cumulative totals were 

calculated from the day of sowing (28 May). 

Figure 3.29 Cumulative water-use, transpiration and soil evaporation by the 

Matong and Quarrion crops during 1990. Cumulative totals were calculated from 

28 August. 
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3.4. Further Discussion and Conclusions 

3.4.1. Stomata! control of evaporation 

The work presented in this chapter demonstrated that stomata! conductance does 

affect the transpiration rate of a crop, although differences in leaf area also had a 

significant impact on water-use over the growing season (figures 3.28 & 3.29). Jarvis & 

McNaughton (1986) theorised that the role of stomata in regulating evaporation 

decreases as the scale of observations increases from leaves to canopies to regions. At 

larger spatial scales boundary layer conductances become a more important factor in 

regulation of evaporation, than stomata. Canopy boundary layer conductance typically 

increases as the surface roughness and wind speed increase, so that rough canopies such 

as pine forests have relatively higher boundary layer conductances than smooth canopies 

of agricultural crops. Wheat crops, such as were examined in this work, are 

aerodynamically smooth so that their evaporation rate has low sensitivity to changes in 

stomata! conductance. This was confirmed in these experiments where large changes in 

stomata! conductance resulted in only small changes in evaporation rate (figure 3.25). 

Despite the reduced effect of stomata! conductance on evaporation rate it was 

apparent that the energy balance of these wheat crops was affected by the stomata! 

conductance (figure 3.25). The different energy balance of the two contrasting wheat 

crops agrees with observed changes to the energy balance in other comparative studies 

of different canopies (Denmead, 1969; Tan & Black, 1976; Whitehead et al., 1984; 

Meinzer & Grantz, 1989; Jarvis, 1993; Baldocchi, 1994a). This confirms the importance 

of stomata, through their role in regulating water loss and C02 uptake, in determining 

the partitioning of energy from vegetation into sensible and latent heat, which is an 

important component of the global climate (Sud et al., 1990; Avissar & Pielke, 1991). 

3.4.2. Scaling from leaves to canopies 

In proposing the concept of canopy conductance, Monteith ( 1965) implicitly 

assumed that the conductances of individual leaves in a canopy act in parallel so that 

canopy conductance is determined by the leaf area weighted sum of leaf conductances 

(Monteith, 1973; Shuttleworth, 1976). Some experiments confirmed that canopy 

conductance was indeed related to the leaf conductance by a factor related to the leaf 
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area index (eg.; Tan & Black, 1976). However, other experiments found that simple 

scaling of leaf conductance by the leaf area index greatly overestimated canopy 

conductance so that a scaling factor less than the leaf area index was required (Munro, 

1989; Rochette et al., 1991). Theoretical analysis of the relationship between leaf and 

canopy conductance found that canopy conductance is influenced by the aerodynamic 

conductance and the radiation distribution, which are affected by the canopy structure, 

so that it is not an entirely physiological parameter (Thom, 1975; Shuttleworth, 1976; 

Finnigan & Raupach, 1987). 

Despite these theoretical complications several studies have successfully 

demonstrated scaling between leaf and canopy conductances derived from flux 

measurements and the Penman-Monteith model. Bailey & Davies (1981) found that 

measurements of the adaxial and abaxial conductances scaled by the leaf area closely 

matched the canopy conductance. Similarly, Baldocchi (1987) found that sampling of 

stomatal conductance from sunlit and shaded leaves with weighting by the appropriate 

leaf areas matched the canopy conductance. Many of the earlier experiments which 

found scaling by the leaf area gave an overestimate of the canopy conductance, did not 

·consider the variation of conductance between leaves in the can.opy. Incomplete 

sampling of leaves throughout the canopy would lead to incorrect estimates of canopy 

conductance. Rochette et al., (1991) compared several scaling approaches and found 

that consideration of the light distribution in the canopy was required to get agreement 

with the canopy conductance. 

Several schemes have been proposed to account for the non-linear light response of 

stomata and radiation distribution in the canopy (Saugier & Katerji, 1991; Kelliher et al., 

1995). Such schemes are not simple and canopy models, which as a minimum account 

for light distribution, are required to accurately scale conductance from leaves to 

canopies. Scaling of photosynthesis from leaves to canopies also requires consideration 

of the non-linear light response of photosynthesis (Kim & Verma, 1991b; Norman, 

1993). Scaling of stomatal conductance and leaf photosynthesis to canopy processes by 

means of models are considered further in subsequent chapters of this thesis. 

Time and labour constraints prevented sampling all leaves in the canopy. This 

chapter emphasised the comparison of water-use efficiency of two cultivars at different 

spatial scales. It is ·apparent that large differences in stomatal conductance between the 

cultivars at the leaf level were diminished at the canopy level, although still present 
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(figure 3.24). This suggests that either the cultivar differences were not as large in the 

rest of the canopy (ie., in the leaves not measured) or that some aspect of the scaling 

from leaves to canopies reduces the cultivar differences (ie., not all leaf area contributes 

equally). The former explanation that cultivar differences were not present in all leaves 

could be explained by soil water deficits affecting leaves in the canopy differently (Dwyer 

& Stewart, 1986), so that the sampled flag leaves did not reflect the difference between 

the cultivars at the canopy scale. However, this effect must have been short lived since 

differences in carbon isotope ratios between cultivars were evident throughout the 

season (Condon & Richards, 1993) and were present in the penultimate leaves as well as 

flag leaves on the days sampled (data not shown), though this is not necessarily a 

reflection of the gas exchange taking place on those days. 

Simple models of the light response of stomata and light extinction in canopies led to 

the suggestion that the ratio of maximum canopy to leaf conductance would 

asymptotically approach a value of 3 as leaf area of a canopy increases (Kelliher et al., 

1995). While these models suggest a diminishing return with increasing leaf area they do 

not explain why the difference between the cultivars should decrease at larger spatial 

scales. 

Relative leaf photosynthesis of the cultivars was not reflected at the canopy scale 

considering the different leaf area of the crops (figure 3.26). As with the scaling of 

conductance, the comparison of cultivars in terms of canopy photosynthesis was 

expected to be related to the different leaf area of the crops, but this was not so. 

These issues of scaling from leaves to canopies have been explored further by 

developing canopy models, which are presented in subsequent chapters of this thesis. I 

will return to these issues in the Chapter Eight to examine if some aspects of the scaling 

process are diminishing the cultivar differences at the canopy scale. 

3.4.3. Comparison of canopy measurement techniques 

There have been several comparisons of chambers with other techniques in the past. 

Canopy chambers have been demonstrated to give reliable canopy gas exchange so long 

as there is sufficient air mixing within the chamber and air flow is accurately measured 

(Nulsen, 1984). Chamber measurements were found to match lysimeter measurements 

(Reicosky et al., 1983), but advective conditions at the edge of fields need to be avoided 

(Dugas et al., 1991). Differences between chamber and Bowen ratio system 
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measurements were found to be between 40 to -80 W.m-2 (0.9 to -1.8 mmol.m-2.s-L) and 

attributed to the different turbulent regime in chambers (Dunin et al., 1989b). In the 

comparisons presented in this chapter, representative site selection was the greatest 

concern in getting reliable measurements of canopy gas exchange from the chambers. 

The lysimeter had the same problem, due to differences in canopy density. The Bowen 

ratio was the most reliable technique during the day, but did not operate at night, due to 

atmospheric stability which made measurements unreliable. Neutron probe 

measurements of the soil water profile gave the best integrated measurements of seasonal 

water-use. 

Modification of the environment by the chambers limits their validity (Wesely et al., 

1989; Denmead & Raupach, 1993). For example, chambers have been shown to 

suppress soil fluxes (Kanemasu et al., 1974). Denmead et al. (1993) attributed greater 

C02 fluxes in a chamber to enhanced utilisation of diffuse light by the canopy for 

photosynthesis; however they did not measure the diffuse light. The measurements of 

diffuse light presented in this chapter show that chambers do indeed increase the amount 

of diffuse light, but not all light in the chamber was diffuse. These effects of chambers 

on the quality of light in chambers wi~l be examined further in subsequent chapters with 

models of canopy photosynthesis. 

3.4.4. Canopy boundary layers 

Associated with the canopy boundary layer is a modification of the air by the energy 

balance of the vegetated surface. The canopy boundary layer limits the mixing of air 

causing humidification and heating of the air close to the surf ace, which can result in a 

feedback from the atmosphere to the rate of evaporation from the surface (McNaughton 

& Jarvis, 1991). If stomatal conductance is reduced, the air adjacent to the surface 

becomes warmer and drier, increasing the saturation deficit of the air, which counteracts 

the effect of reduced conductance, so that the evaporation rate is not reduced by as much 

as it would have been if these feedbacks did not occur. Indeed, in this experiment the 

saturation deficit of the air was observed to increase when stomatal conductance was 

severely reduced (figure 3.25). Cowan (1988) suggested that the feedback associated 

with the canopy boundary layers may in fact reverse the benefit of reducing stomatal 

conductance, so that water-use efficiency may improve if stomata were to open more 

rather than close. Opening the stomata would cause the air to humidify reducing the 

saturation deficit of the air and increasing evaporation only slightly while allowing more 
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favourable conditions for photosynthesis. These experiments showed that although there 

was some modification of the air by the evaporation rate of the vegetated surface, the 

feedback was insufficient to completely negate or reverse the benefit of reducing 

stomata} conductance to improve canopy water-use efficiency (figure 3.27). 

These feedback phenomena between the vegetation and the atmosphere have 

important implications for the size of plots used to examine water use by vegetation. If 

small plots are used with altered stomata} conductance to assess water use then the 

interactions with the atmosphere may not develop fully so that different results would be 

obtained than if extensive areas with reduced stomata} conductance were used. For these 

reasons this experiment was conducted in extensive paddocks of wheat with contrasting 

stomatal conductance. The issue of plot size was pursued by growing small plots of each 

of the cultivars Matong and Quarrion embedded in the large paddocks. Results of these 

comparisons will be presented in a paper by AG Condon et al. Another aspect of the 

same issue is the question of how large do plots need to be to observe the development 

of the atmosphere-vegetation interactions. This phenomenon of modifications to the 

atmosphere after a change in surface conductance or evaporation rate, is called advection 

and is pursued in Chapter Nine. 

These experiments had an unexpected outcome in terms of approaches to improve 

water-use efficiency. It was apparent that much of the gain made through reduced 

transpiration could be offset by increased soil evaporation (Condon & Richards, 1993). 

This has led to a new line of plant breeding to obtain cultivars with low ti, high water­

use efficiency and high early vigour to reduce soil evaporation losses (Condon et al., 

1993 Richards, R.A., personal communication). This reinforces earlier work that 

showed canopy leaf area was a major determinant of crop water-use efficiency by 

balancing pre- and post-anthesis water use to maximise crop yields (Fischer, 1979). 

Improved water-use efficiency through use of ti can only be effective so long as other 

crop attributes, such as early vigour, are not compromised. Use of cultivars selected on 

the basis of ti to attain greater crop yields will require the incorporation of many other 

plant characteristics and altered management techniques, as was the case with 

incorporation of dwarfing genes into new wheat cultivars, where the alteration of a single 

trait by itself did not improve yield per se (Bush & Evans, 1988). 
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Summary 

A comparison is made of three different approaches to modelling stomata! 

conductance based on either, 1) the response of stomata to environmental parameters, 2) 

the correlation of conductance with photosynthesis or 3) the optimisation of carbon gain 

with respect to water loss. The models were evaluated by comparison with field data 

from two canopies of wheat with contrasting leaf conductance. 

In saturating light, a humidity response function in a Jarvis-type model accounted for 

much of the variation in stomata! conductance (r2 = 0.70). Although there was little 

distinction between functions of relative humidity or leaf-to-air water vapour pressure 

difference (D), it was concluded that a function of ll(k + D), the Lohammar function, 

were more appropriate given the response of stomata to evaporation rate rather than 

relative humidity. The Ball-Berry type model, using photosynthesis (A) as a variable 

improved the explanation of variation of leaf conductance over the Jarvis-type models (r2 

= 0.75). No other combination of variables in a Jarvis type model was as good as using 

A. No further functions of either light intensity, temperature, soil water availability or 

C02 concentration added any significant improvement to the models. 

An analytical solution for leaf conductance was derived from the theory of 

optimisation of water loss with respect to carbon gain, aEtaA, using a linear response of 

photosynthesis to C02 concentration. This function explicitly contains photosynthesis, 

and a humidity response to 11"1D. A simplified linear aEtaA model was as good as the 

Ball-Berry model, with the Lohammar humidity function, at explaining the variation of 

leaf conductance. Fitting the linear aEtaA model to data from each day separately 

improved the model (r2 = 0.87), though many more parameters were used. Following 33 

mm of rain, there was a large increase in values of aE1aA from Matong, compared to 

little change of aEtaA for Quarrion. The full aEtaA model was poor at explaining the 

observed variance of leaf conductance (r2 = 0.36 & 0.06 for Matong and Quarrion 

respectively), due to the sensitivity of the partial differentials of the model and the 

stochastic nature of stomata! conductance in the field. 

The best model of stomata! response to the environment was the Leuning modified 

Ball-Berry model based on the correlation of stomata! conductance with photosynthesis 

and a hyperbolic response to D. Values of the model coefficients varied when the model 

was fitted to data from different days. 
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4.1. Introduction 

Stomata are pores in the leaf surface that allow gaseous exchange between the 

atmosphere and the intercellular air spaces. They allow C02 to diffuse into the leaf, 

where it can be fixed by photosynthesis and they help prevent desiccation by regulating 

the efflux of water vapour. This conflict between C02 influx and water vapour efflux 

was one of the main problems that had to be overcome to allow plants to move away 

from permanent water onto land during the early Devonian era (Thomas & Spicer, 

1987). Thus, the stomatal mechanism for this regulation has had approximately 400 

millions of years of refinement through evolution. 

The importance of stomata is reflected in the diverse areas of research that study 

stomatal response to the environment, including; photosynthesis (Farquhar & Sharkey, 

1982), water use (Jarvis, 1976), energy partitioning (Avissar, 1993) and pollution uptake 

(Baldocchi et al., 1987). Many aspects of stomatal functioning and response to the 

environment have been extensively studied (for reviews see (Zeiger et al., 1987, and; 

Grantz, 1990). Yet despite all this work many mechanistic details remain elusive. 

Models of stomatal conductance reflect this state of affairs. Those that are based on 

known mechanistic functioning of stomata are too complex to parameterise and use (eg. 

(Penning de Vries, 1972). Other models are either based on empirical correlations, that 

may or may not be related to mechanisms, or on teleological theory. 

Models of stomatal conductance can be divided into three categories: those that are 

based on regressions with environmental variables, referred to here as Jarvis-type models 

(Jarvis, 1976), those that are based on the correlation between stomatal conductance and 

photosynthesis (Wong et al., 1979; Farquhar & Wong, 1984), called Ball-Berry type 

models (Ball et al., 1987; Leuning, 1990; Leuning, 1995), and those based on the theory 

of optimisation of carbon gain with respect to water use (Cowan, 1977; Cowan & 

Farquhar, 1977), known as aElaA type models, where aE1aA is the ratio of the 

sensitivities of transpiration and assimilation to changes in stomatal conductance ((aE1a 

g)1caA1ag)) 

The choice of functions used in the Jarvis or Ball-Berry models differ between 

experiments. In particular the nature of the stomatal response to leaf-to-air vapour 

pressure difference (D) has changed depending on whether vapour pressure (ea) or leaf 

temperature (T1) was varied (Collatz et al., 1991). This has caused consternation among 
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some researchers as to the mechanistic interpretation of such variation (Ball et al., 1987; 

Aphalo & Jarvis, 1991). In field studies, variation in D is mostly attributable to the 

diurnal variation of Ta and to a lesser extent ea. 

The oE/oA model as originally presented by Cowan and Farquhar ( 1977) required 

careful experimentation to determine the photosynthetic response surf ace to temperature 

and intercellular C02 concentration. While this is possible in controlled environments 

(Farquhar et al., 1980; Hall & Schulze, 1980), it is yet to be achieved in natural 

environments. A simplification of the oE/oA model, by assuming an infinite boundary 

layer conductance and a linear relationship between photosynthesis (A) and the 

intercellular C02 concentration (ci), allowed an analytical expression to be obtained 

(Cowan, 1977), which was reflected in the shape of observed stomatal responses (Lloyd, 

1991). 

In this work I have taken another approach to implementing the oE/oA model. 

Models of leaf photosynthesis, transpiration and the leaf energy balance were fitted to a 

data set of stomatal conductance (g) and environmental parameters. These models were 

then used to determine oE/og and oA/og numerically and hence calculate the value of 

oEtoA. 

The broad objective of this work was to develop a scheme for spatial scaling of 

photosynthesis and evaporation, in particular from the leaf level of organisation to the 

canopy. In scaling physiological processes it is necessary to identify essential 

components at the smaller scale that influence the process at the larger scale. Stomatal 

conductance is a vital component that affects both photosynthesis and evaporation at the 

leaf level and at the canopy level. Since both photosynthesis and evaporation are driven 

by energy input from solar radiation and turbulent transfer, those leaves that intercept 

more light and are more exposed to the wind, ie. at the top of the canopy, are expected 

to make a greater contribution to the canopy level processes than shaded, sheltered 

leaves, lower in the canopy. This concept is supported by field studies using micro­

meteorological techniques, which identified the upper level of canopies as the main 

source of water vapour and sink for C02 (Denmead & Bradley, 1985; Raupach et al., 

1992). In this context, the modelling of leaf level processes should reflect the relative 

importance of the upper leaves in a canopy, by giving emphasis to describing their 

behaviour. 
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Conductance of leaves lower in the canopy can be inferred from the conductance of 

leaves at the top using two consistently observed phenomena. 1) Conductance is 

correlated with photosynthesis, whether caused by leaf aging, nutrient status or light 

levels (Wong et al., 1978; 1985a; 1985b; 1985c). 2) Leaves lower in the canopy are 

older, receive less light and have lower photosynthetic capacity (Field, 1983; Hirose & 

Werger, 1987b). Together these biological observations provide a sound basis for 

strategic modelling of upper leaves of the canopy, giving reasonable predictions of 

stomatal conductance of lower leaves. This strategy simplifies the stomatal model so 

that it can easily be parameterised, allowing it to be used for scaling up to the canopy. 

It is important that a stomatal model, that is to be used to describe canopy processes, 

be developed using field data, since the dynamic environment of leaves in the field is 

different from the environment in laboratories. The environment in the field is dominated 

by diurnal changes in light and temperature, with little variation in C02 or water vapour 

concentration. The environment of leaves is also partially affected by the stomatal 

conductance itself. Wide-open stomata will tend to humidify the air and cool leaves, thus 

slightly reducing the leaf-to-air water vapour difference, ie. there is a degree of feedback 

in the evaporating system. In ·contrast, in many laboratory gas exchange systems leaf 

temperature or humidity is imposed upon a leaf, preventing any feedback. In some 

circumstances these interactions can result in apparently different stomatal responses to 

the environment between laboratory and field studies. 

Models have typically not explained variation of stomatal conductance in field studies 

to the same degree as in laboratory studies (eg. (Lloyd, 1991; Lloyd et al., 1991). This 

may be caused by the dynamic nature of the environment as already suggested, or by as 

yet unknown factors, or interactions between factors, or from the stochastic nature of 

stomatal conductance. In an attempt to account for this variability, many studies have 

attempted to monitor stomatal conductance in the field by random sampling of leaves 

from all positions in the canopy, yet have not necessarily included leaf age or position in 

the canopy as variables in the model. This strategy probably arose from the belief that a 

single unifying model of stomatal conductance should apply to all leaves. However, 

given the nature of degeneration of leaves with age and senescence, it is unlikely that a 

single model based on environmental parameters alone could account for this variation if 

leaf age or leaf nitrogen content (or photosynthetic capacity) is not included as a 

parameter itself. As already mentioned, gradients of leaf properties down a canopy are 

known to exist and have considerable effect on leaf physiology. Thus, this random 
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sampling strategy may have obscured better models of stomata! conductance from being 

identified. A focussed sampling effort aimed at leaves at the top of the canopy, may be a 

better use of limited resources and provide a better model of stomatal conductance in the 

context of scaling up to canopy processes. 

This chapter describes the modelling of the stomata! conductance of fully sunlit 

leaves at the top of the canopy. The objective of the analysis was to determine the most 

suitable model to explain the variation of stomata! conductance in the field, that could 

also be used to extrapolate over a diurnal cycle and that could be incorporated into a 

scheme to scale up to the canopy. This involved a comparison of the models from both a 

theoretical and a statistical point. The next chapter uses these models to explore the 

scaling up of leaf measurements to the whole canopy and. the determination of canopy 

transpiration. 
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4.2. Models 

4.2.1. Jarvis type models 

These models assume that stomatal conductance (g) can be described by several 

independent functions of environmental factors. Stomata} conductance is determined by 

their product: 

gl = J(l)J(D)J(I;)J(c0 )f(0) , (4.1) 

wheref(l),f(D),f(T1),f(ca),f(0) are response functions to light intensity, leaf-to-air water 

vapour pressure difference, leaf temperature, C02 concentration and relative leaf water 

content, respectively. The form of the functions can be determined from controlled 

environment studies where environmental factors are varied separately, or by determining 

the best fit to a data set by statistics. Parameter values are determined by least squares 

regression of the functions on each data set. 

The best choice of variables and response functions has varied with each data set 

examined, since they are based on regressions that may cover different ranges of the 

variables. The functions of I and D have been found to account for most of the variation 

and are considered a minimum set of variables (Thorpe et al., 1980; Jarvis et al., 1981). 

The response to /has been modelled as hyperbolic (Jarvis, 1976). The response to D has 

been linear, reciprocal or exponential (Jarvis, 1976; Lohammar et al., 1980; Jones, 

1992). The temperature response functions reflect an optimum temperature for 

maximum stomatal conductance, and decreasing conductance to either side (Jarvis, 1976; 

Lloyd, 1991 ), but are often not significant (Jarvis et al., 1981 ). The C02 response 

reflects a linear decline above a certain threshold concentration. The effect of water 

status is modelled as a negative exponential function (Jarvis, 1976). However, in well­

watered conditions or even under mild water stress a response to water status is not an 

important variable (Whitehead et al., 1981; Thorpe et al., 1980; Jarvis et al., 1985; Jones 

& Higgs, 1989). 

A data set that covers the entire multi-dimensional environment space is required for 

these Jarvis-type correlation models, if the model is to be used confidently to predict new 

values of stomata} conductance. This is often difficult in field situations where many of 
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the environmental variables are strongly correlated. Strategic sampling is needed to 

overcome these correlations to determine the form of each function separately. Many 

data sets do not cover a broad range of some variables, which is probably the cause of 

the choice of best function varying between each experiment. Interpretation of the 

resulting best fit models to determine a mechanistic basis of stomatal response can be 

misleading (Aphalo & Jarvis, 1993). Some functions have asymptotic values of infinity 

or zero at extreme or particular values of the environmental variables. This should not 

be interpreted as a prediction of stomatal behaviour at these points, but rather that these 

functions are discontinuous ie., they have limits to their applicability. Sometimes the 

discontinuities can be avoided by incorporating an additional constant (Leuning, 1995). 

Discontinuities are also present in some functions of the Ball-Berry and aEtaA models. 

4.2.2. Ball-Berry type model 

These models take advantage of the observed coordination between leaf 

photosynthesis and conductance with changing light, C02 or nutrient levels, both in the 

short and long term (Wong et al., 1978; 1985a; 1985b; 1985c). Ball et al. (1987) used 

this correlation to model stomatal conductance by considering leaf photosynthesis as 

another variable in a Jarvis-type expression: 

(4.2) 

where A is leaf photosynthesis, and h and cs are the humidity and C02 concentration of 

the air at the leaf surface. Simple linear regressions of g against the stomatal index, 

Ah/c
8

, were used to determine the coefficient (a1) and sometimes an intercept (g0 ) 

representing a cuticular conductance. Leuning (1995) showed the importance of 

including the intercept term for correct modelling of intercellular C02 concentration (ci) 

at low light. Modifications for particular data sets have included an offset of the C02 

term by the C02 compensation point, r, which improves predictions at low C02 

concentrations (Leuning, 1990), and replacement of h by a hyperbolic dependence on D 

(Leuning, 1995). Exploitation of the coordination between conductance and 

photosynthesis in models is based on the behaviour of ci (Leuning, 1995). Other models 

have used the somewhat conservative behaviour of ci explicitly in models of conductance 
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(de Wit & et al, 1978; Norman & Polley, 1989; Kim & Verma, 1991a), although this 

approach masks the subtle variations in ci that do occur. 

The Ball-Berry models can be considered a special case of a Jarvis type model, where 

one of the variables is leaf photosynthesis. However, this does have practical 

implications for use of the model, since photosynthesis must be known a priori or 

predicted from a model of photosynthesis. Thus the problem of knowing g is shifted to 

that of determining leaf photosynthesis. If photosynthesis is known by gas exchange then 

stomata! conductance is also easily measured. Alternatively, using a model of 

photosynthesis requires knowledge of the intercellular C02 concentration (ci), which is 

determined by both photosynthesis and stomatal conductance. Thus, either conductance 

is measured and a model is not required or determining conductance becomes a circular 

problem. This circularity can be overcome and a solution found by iteratively solving the 

conductance and photosynthesis models, although the presence of leaf boundary layers 

mean that surface humidity, surface C02 concentration and the leaf energy balance must 

also be calculated iteratively. The Jarvis type models do not suffer from such circularity, 

but often do not reflect the reductions in stomata! conductance that occur when 

photosynthesis is reduced for endogenous reasons. 

4.2.3. aE/aA models 

The aEt()A concept is based on the optimisation of water use with respect to carbon 

gain. Cowan ( 1977) and Cowan & Farquhar ( 1977) developed this theory to 

demonstrate that leaf conductance would vary, in response to the environment during the 

day, so that the average rate of evaporation is a minimum for the particular average rate 

of assimilation. They showed that the 'optimum' stomatal behaviour is obtained when 

aEtaA is constant (A) with time and that a plant should operate such that A. is uniform 

amongst all leaves. Gas exchange in a controlled environment of a laboratory showed 

that stomata! response to the environment is consistent with the aEtaA theory (Farquhar 

et al., 1980; Hall & Schulze, 1980). Whether, stomatal behaviour in the field is 

consistent with aEtaA theory remains to be demonstrated. 

Analysis of aEtaA requires division of the response surface into component 

interactions between photosynthesis, transpiration and the leaf energy balance (figure 

4.1 ). Partial derivatives are used to describe the interactions so that 
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Figure 4.1 Component interactions of stomata! regulation of photosynthesis, 

transpiration and the leaf energy balance. 

/.... = 'dE/iJA = 'dE/'dg . 
'dA/'dg 

(4.3) 

The response of photosynthesis and transpiration to leaf conductance can be further 

separated into that part which is caused directly by the change of conductance (ie. at 

constant temperature) and that which is a result of the change in temperature, a feedback 

from the leaf energy balance, 

· 'dE ('dE) ('()£) 'dI; 
ag = ag T. + ai; ag ' 

I g 

(4.4) 

(4.5) 

The subscripts outside the brackets indicate the variables that remain constant with each 

partial derivative. The response of photosynthesis to conductance at constant 

temperature, (dA/dg)Tr can be further divided to demonstrate the direct effect of a 

change in leaf conductance on c;, (dc/dg)A, the effect of photosynthesis on c;, (dc/'dA)g, 

and the physiological response of photosynthesis to c;, (dAl'dc)Tr (see Appendix for 

more details), 

(aA) (aci) 
(

dA) = de; 1i dg A 

'dg 11 1_(aA) (aci) 
de; r. 'dA c 

I 

(4.6) 
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Solutions to these equations can be found by evaluating the partial derivatives by 

several different means; measurements in controlled environments, simplification to 

eliminate components or numerically with models. Considerable experimentation in a 

controlled environment is needed to measure the photosynthetic responses of (()A((1c)T
1 

and (()A(<JT1)8
. The results of such experiments depend on the measurement protocol 

(Collatz et al., 1991; Lloyd, 1991) and consequently do not necessarily reflect the 

response in natural situations. This method has not been explored any further here. 

Simplifications, which allow an analytical solution to be obtained are explored in the next 

section. This is followed by a section describing a modelling approach to implement the 

full "dE!"()A model to evaluate A.. 

4.2.3.1. Linear form of aE1aA 
There are various ways of simplifying the "dE!"dA model. One way is to linearise 

components, which has been done in several different ways (Cowan, 1977). In well­

ventilated situations the boundary layer conductance is large, so that "dT/"dg = 0 (ie. the 

leaf energy balance is ignored and T1 = Ta) and ("dEl"dg)T
1 
= D. If light is sufficient to 

saturate photosynthesis and leaf conductance is small then the A-ci curve can: be 

approximated by a linear equation, so that 

(aAJ -k- A 
"de. - - c. -r · 

l 1j I 

(4.7) 

An analytical solution was obtained for the optimal leaf conductance as a function of the 

'internal resistance' to C02 transfer (1/k) (Cowan, 1977, eq~ 85 p. 203). However, I have 

chosen to replace k with Al(crD. which eliminates ci and explicitly incorporates A, to 

give an analytical solution of leaf conductance, comparable with the Ball-Berry model, 

g =A l.6A. 
(ca -r)D · 

(4.8) 

This simple model can be extended to situations in which boundary layer 

conductance is finite by use of some approximations. In particular the leaf energy 

balance is used to determine T1, but the feedback effects of the leaf energy balance are 

ignored ("dT/"dg = 0) and to a first approximation ("dE!"dg)T
1 
= D. Although this model is 
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not strictly correct for situations with a finite boundary layer conductance, it is still of use 

to give the general characteristics of the stomata} response. 

The values of A. for this model were calculated from linear regressions. The linear 

form of 'dE/()A model has a form similar to that of the Ball-Berry model, but with a 

stomata} response to ll~D. However, it is shown later that this equation has an 

unrealistic representation of stomata} response to C02, that does not concur with 

observations. 

4.2.3.2. 'dEliJA from Models of Transpiration and Photosynthesis 

Cowan & Farquhar ( 1977) presented analytical solutions for the sensitivities of E and 

A to a change in leaf conductance, by differentiating models of the mass flow equations 

associated with E, A and the leaf energy balance (eqs. 4.17, 4.10 & 4.18). However, 

their expressions still require knowledge or measurements of ('dAl'dc)Tz and ('dAl'dT1)g, 

which are not easy. Alternatively, these expressions can be calculated numerically from 

models, which is the approach I have taken here. Since these calculations require 

implementation of entire models of E, A and the leaf energy balance, I have calculated all 

the differentials (eqs. 4.4 - 4.6) numerically rather than using tqeir analytical solutions. 

Models were fitted to the data of E, A and the leaf energy balance, their sensitivities to a 

small change in g calculated and their ratio used to calculate A.. 

Photosynthesis Model 

The Farquhar et al. (1980) model of leaf photosynthesis was fitted to the data, 

assuming light saturation, 

(4.9) 

where Vis the Rubisco capacity of the leaf, ci is the intercellular C02 concentration, r. is 

the C02 compensation point in the absence of mitochondrial respiration, Kc and K0 are 

the Michaelis-Menten constants of Rubisco for C02 and 0 2 respectively and 0 is the 

oxygen concentration. Temperature dependencies of V, Kc, K
0 

and r were described by 

the Arrhenius function (Farquhar et al., 1980) and of r. by a quadratic expression 

(Jordan & Ogren, 1984). Values of parameters are found in the List of Symbols. 
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The intercellular C02 partial pressure, ci, was determined by the C02 supply function, 

A 
C; =Ca - , 

l.6r,. + 1.371i, 
(4.10) 

where rs and rb are the stomatal and boundary layer conductances to water vapour, 

respectively and the factor 1.6 arises from the ratio of the diffusivities of water vapour 

and C02 in air (DjDc) and 1.37 represents the ratio of the diffusivities in the boundary 

layer (DjDc) 213 (Bird et al., 1960). 

Combining eqs. 4.9 & 4.10 to eliminate Pi an expression was obtained for leaf 

photosynthesis in terms of combined leaf and boundary layer conductance 

(gt= l/(1.6r:f + l.37rb)), 

(4.11) 

where K' is the effective Michaelis-Menten constant for carboxylation (mole fraction) 

and is given by 

(4.12) 

Leaf Energy Balance 

Available energy (Q) consists of several wavelength components that are 

differentially absorbed by leaves; photosynthetically active radiation (PAR, 0.4 - 0.7 µm), 

near infra-red (NIR, 0.7 - 3.0 µm) and long wave (3 - 100 µm), which can be 

summarised as 

(4.13) 

where Rv and RIR are the net absorbed PAR and NIR radiation, Rfaky and RLieaf are the 

long wave radiation from the sky and leaf respectively. Long-wave radiation is 

dependent on the source temperature according to the Stefan-Boltzmann Law, 

(4.14) 
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where cr is the Stefan-Boltzmann constant, Es is the emissivity of the source and the 

temperature is degrees Kelvin. Long-wave radiation is absorbed by water vapour in the 

atmosphere so that an apparent emissivity of the sky (Esky) can be calculated from the air 

temperature (K) and water vapour pressure (mbar) (Brutsaert, 1982), 

(4.15) 

Changes in leaf temperature affect the energy balance, through the emission of long 

wave radiation (Rueaf), which in tum affect the available energy for evaporation. The 

feedback between surface temperature and evaporation rate can be incorporated into the 

combination equation by use of the isothermal net radiation concept, in which Q has two 

components, Q
0 

the isothermal net radiation (the available energy if leaf temperature 

were equal to air) and a term that accounts for the additional radiation exchange as a 

result of the difference between leaf and air temperatures, 

(4.16) 

where g, is a radiative conductance (4crE/T3/CP), CP is the molar specific heat content of 

air at constant pressure and !J.T is the difference between leaf temperature and air 

temperature outside the boundary layer (T1 - Ta). It was assumed that the lower leaf 

surface receives long-wave radiation from adjacent leaves at the same temperature and 

therefore has no net exchange of long-wave radiation, and that the upper leaf surface 

exchanges long-wave radiation with the sky. Net short-wave radiation absorbed by the 

leaf was calculated from the measured photosynthetically active radiation (PAR, 0.4-

0.7µm) at the angle of the leaf, assuming that the ratio of short-wave radiation to PAR is 

0.5 (MJ.mol-1) and an absorption coefficient for solar radiation of 0.5. 

Introducing this concept into the combination equation results in the expression 

(Cowan cited in Jones (1976)) (see appendix for details), 

E= Erb·8 Q)L+.D. 
~ + 'i, + E'i,H 

(4.17) 

where E is the change of latent heat content of saturated air with a change in sensible heat 

(sLl(CPP)), L is the molar heat of vaporisation and r*bH is the combined resistance to 

sensible and radiative heat transfer in parallel (11(1/rbH + g,)). 
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A similar equations can also be derived for the surface temperature (see appendix for 

details), 

(4.18) 

These models of transpiration and photosynthesis were used to implement the "()E/"()A 

theory both to predict stomatal conductance and to interpret measurements as outlined 

below. 

Estimation of aeaA 

The photosynthesis model was fitted to measured values of A, T1 and P; to determine 

V. E was calculated using the Li-Cor measured g and values of Ta and ea measured 

25 cm above the canopy ( eq. 4.17). Leaf temperature was then calculated from the leaf 

energy balance using the measured light intensity converted to radiant energy (eq. 4.18). 

A new value of A was then calculated using the new T1 and the ambient ca (eq. 4.9). 

Leaf conductance was incremented by 0.05 mol.m-2.s-1 and new values of E, T(and A 

calculated. The ratio of the incremental changes in E and A was used to calculate "()E/"()A. 

Leaf conductance predicted from A. 

For optimal stomatal behaviour, iJE!iJA is constant in time and space at a value A, 

say. To calculate the value of g (and other parameters) at which "()E/"()A = A, g was 

incremented in small steps from 0, and "()E/"()A calculated as explained above. As g 

increased the value of iJE/"()A also increased until the selected value of A was reached and 

the combination of g, E, T1, A and Pi noted as the values predicted by the model for any 

given combination of Ta, ea, I and V. Predictions of g from several values of A were 

obtained, which were then compared with the measured values. 

As with the Ball-Berry model, the "()Ef"()A model requires knowledge of leaf 

photosynthesis. It does, however, then provide considerably more information than the 

Jarvis-type model. Interpretation of A in an ecological context (Cowan, 1986) does give 

the "()Ef"()A model an advantage over the Ball-Berry and Jarvis models whose parameters 

do not necessarily have any physiological meaning. 
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4.3. Experimental Methods 

Details of the experimental methods were given in chapter 3. A brief description is 

reiterated here. 

4.3.1. Laboratory measurements 

Plants of wheat cultivars Matong and Quarrion were grown in a glasshouse in 

Canberra from during May-July. Measurements of flag leaf gas exchange were 

conducted at 25°C, light intensity of 1500 µmol quanta.m-2.s-1, C02 concentration of 350 

µmol per mol and average ambient air pressure of 95,100 Pa. Variation in D was 

generated by varying the humidity of the air stream passing over the leaf. At least 20 

minutes was allowed for equilibration between each change of humidity, before steady 

state measurements were taken. 

4.3.2. Field measurements 

Two cultivars of wheat were grown in 5 hectare paddocks at W agga Wagga. They 

were sown on May 22, 1990 and reached anthesis on the 20 and 22 October for Matong 

and Quarrion respectively. Measurements of leaf photosynthesis and conductance were 

made with a Li-Cor 6200 portable photosynthesis system. Sections of flag leaves for 

measurement were selected so that they were perpendicular to the solar beam, to ensure 

stomatal adjustment to saturating light. Average atmospheric pressure was 98.7 kPa. 

Measurements were made on 10 days in the weeks before and after anthesis, which 

corresponded with a period of declining leaf area index. Ambient Ta and ea were 

measured with ventilated wet- and dry-bulb psychrometers at 25 cm above the canopy. 

These sensors were part of a Bowen ratio system to measure canopy fluxes. Ambient ca 

was measured in an air stream sampled from 25 cm above the canopy with an infra red 

gas analyser (Binos). 

Soil water profiles were monitored fortnightly with a neutron probe to a depth of 1.8 

m. The soil profile was saturated by rain at the end of July, which was used as a 

reference for subsequent measurements to calculate soil water depletion and relative soil 

water availability (W). 
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4.4. Results 

4.4.1 . Laboratory measurements 

Leaf conductance, obtained from glasshouse grown plants measured with the 

laboratory gas exchange system, showed a strong response to D (figure 4.2). 

Photosynthesis also decreased with increasing D, but not as much as stomatal 
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Figure 4.2 Variation in stomata! conductance (g), photosynthesis (A), 

transpiration (E) and ratio of intercellular to ambient C02 partial pressures (p/p8 ) 

as a function of the leaf-to-air water vapour pressure difference (D). 

Measurements were made in the laboratory gas exchange system in order of 

increasing D on three different flag leaves of glasshouse grown wheat plants of the 

cultivars Matong and Quarrion (open circles and solid squares, respectively). 

Measurements made on the same leaf are connected by lines. Leaf boundary 
layer conductance was 3.5 mol.m-2.s-1. Leaf temperature was 25 ± 0.2 °c. 
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conductance, so that P/Pa decreased with increasing D. Transpiration increased with 

increasing D below 1.5 kPa, while at D > 1.5 kPa the response of E was variable. The 

response of transpiration to D has implications for inferring the mechanism by which 

stomata respond to humidity. When E increases with increasing D the stomatal response 

can be attributed to feedback behaviour, but when E decreases with increasing D a 

feedforward mechanism of sensing humidity is required (Farquhar, 1978; Cowan, 1977). 

There remains doubt about the existence of feedforward behaviour, as the response is 

usually not repeatable when D is decreased. In this experiment, some leaves showed 

evidence of feedforward behaviour, but reversibility was not checked. 
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Figure 4.3 Variation of photosynthesis (A) with stomata! conductance (g) (left) 

and with intercellular C02 partial pressure (p~ (righ~, caused by changing leaf-to­

air water vapour pressure difference (D). Data were from the same measurements 

as in figure 4.2. 

As expected the relationship between photosynthesis and stomata} conductance was 

not linear with variation in D (figure 4.3). However, significant variation was observed 

in the photosynthetic capacity; apparent in the A-pi curves. 
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Table 4.1 Correlation coefficients (r2) for the linear regressions 

of stomata! conductance (g) and the response functions of leaf­

to-air water vapour pressure difference (0). Data were from 

the laboratory measurements presented in figure 4.2. 

Function 
1/D 

11'1D 
D 

Matong 
0.91 
0.95 
0.97 

Quarrion 
0.85 
0.84 
0.77 

Average 
0.88 
0.90 
0.87 

Several stomata! response functions to D were fitted to both data sets. The fits with 

functions of 1/D and 11'1D (with non-zero intercepts) were just as good as a linear 

regression (Table 4.1). However, the predicted stomatal behaviour of these functions 

varied considerably when they were used to extrapolate to higher values of D (data not 

shown). A greater range of D was required to distinguish between these functions. The 

variation of D was generated by changing the water vapour pressure of the air. It was 

not possible to obtain data at higher values of D with these plants in the laboratory gas 

exchange system, as the stomata began to oscillate and did not stabilise sufficiently. This 

may have been due to the contrast between the steady, mild growth conditions 

(Ta = 22 °C, h = 60%) and the higher temperatures required to get higher values of D. 

4.4.2. Field measurements 

Field measurements of stomata! conductance were made on ten days during 1990. 

Examples of the diurnal trending, A, P/Pa and Dare presented in figure 4.4. The day of 

25-0ct was typical of many days with adequate soil moisture and mild temperatures. On 

this day stomata! conductance of Quarrion was 45% less than that of Matong. 

Photosynthesis of both varieties was very similar, since Quarrion had a higher 

photosynthetic capacity per unit leaf area (Chapter Seven). As a result P/Pa was 20% 

lower in Quarrion than in Matong. There was a decline in photosynthesis during the day, 

which was not necessarily due to stomata! limitation, since P/Pa remained constant in 

Matong and increased during the day in Quarrion. 
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Figure 4.4 Field measurements stomata! conductance (g), photosynthesis (A), 

ratio of intercellular to ambient C02 partial pressures (p/p8 ) and leaf-to-air water 

vapour pressure difference (D) on 25-0ct-90 (leff) and 30-0ct-90 (righfJ. Standard 

errors are shown as error bars. Each point is the average of five measurements. 

The day of 30-0ct-90 was an extreme day of severe heat (35°C), high D and low soil 

water content. Matong which had been using soil water faster than Quarrion, because of 

the greater conductance, was more severely stressed with conductance on average 48% 

lower than that of Quarrion. Photosynthesis declined markedly in both varieties from 

mid-morning onwards, but this decline was not entirely due to stomata! limitation since 
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P/Pa increased during the day. Matong, as a result of the lower conductance, had higher 

leaf temperatures, drier air and greater D than Quarrion. 
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Figure 4.5 Stomata! conductance (g) measured in the field plotted as a function 

of leaf-to-air water vapour pressure difference (D). Data from 1 O days are shown 

for Matong (/eft)-and Quarrion (righf). Also shown is the function of 1/(k+ D) (line). 

Combined data from all days showed a significant stomatal response to D in both 

varieties (figure 4.5). The function of ll(k + D) is also plotted for comparison, which 

appears to account for much of the stomatal response to humidity. There was more 

unexplained variability in the Quarrion data than in Matong data. 

4.4.3. Comparison of models 

Different functions and combinations of functions have been used to model stomatal 

response to the environment. Several criteria are available for evaluating these models. 

Prior knowledge of variables which affect stomatal conductance was used to select 

suitable models which were then evaluated statistically. Common statistical criteria for 

rating regression equations are the residual mean squares or multiple correlation 

coefficient, r2. However, inclusion of more fitted parameters inevitably causes a 

reduction in the residual mean squares and an increase in the r2, which confounds 

comparisons between models with different numbers of parameters or variables. Using 

the adjusted-r2 can account for inclusion or removal of independent variables, but has 

120 



Modelling stomata} conductance 

defects when comparing models with different sets of variables (Snedecor & Cochran, 

1980). When the proposed model is also to be used for prediction, each variable used 

introduces additional variance, so that the variance of the predictions increases 

monotonically with the number of variables used. Methods for quantifying the statistics 

in this trade-off, between increased explanation on the one hand and increasing variance 

of prediction on the other, are available (eg. Miller, 1990). Although they provide more 

accurate statistical criteria for evaluating models, they are complex to calculate. I have 

not used them in this analysis, but used instead the simple r2 as a guide. Knowledge of 

stomata} behaviour outside the range of variables encountered in this study was also 

considered in the evaluation of stomatal models. For example, stomata} conductance 

decreases as C02 concentration increases and stomata do not continue opening at high 

humidity but reach a maximum aperture (Morison & Gifford, 1983). 

4.4.3.1. Jarvis models 

Several functions for the Jarvis models were fitted to the stomatal conductance data 

and the regression correlation coefficients compared (Table 4.2). Variables associated 

with the water vapour concentration ie. h, D or "'-ID were the most useful for explaining 

variation of g. Of these variables, h was the most useful explairung 69% of the variance 

Table 4.2 Correlation coefficients (r2) for the Jarvis type models with 

various functions fitted by linear regression to the field data of 

stomata! conductance. 

Function r2 r2 r2 
Matong Quarrion Average 

h 0.735 0.646 0.691 
h/ca 0.792 0.665 0.728 
h/(ca - n 0.780 0.636 0.708 
h[l - eXQ(-kW)] 0.818 0.707 0.762 
l/D 0.640 0.608 0.624 
l/(k + D) 0.736 0.670 0.703 
ll[cik + D)] 0.765 0.676 0.721 
l/[(c - r)(k + D)] 0.778 0.690 0.734 
ll"'-fD . 0.683 0.609 0.646 

ll"'-f(k + D) 0.732 0.669 0.700 

l/[ca"'-f(k + D)] 0.768 0.674 0.721 

l/[(c -r)"'-f (k + D)] 0.787 0.694 0.740 
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in g. However introducing a constant (k) in the denominator improved the functions of 

D and .,,/D (Lohammar et al., 1980), so that they were equally as good ash. Introducing 

a response to C02 (ca) made only a small improvement in all three functions, which was 

expected since there was little variation in C02 concentration in the measurements. 

Adjusting the C02 function for the C02 compensation point of photosynthesis (r) 

improved the fit slightly for the D and .,,/D responses, but not for the h function. The best 

fit was obtained with h and an exponential function of relative available soil water (W). 

However, combining functions of W with other variables gave poorer fits than when W 

was not used (data not shown). Functions of light intensity, temperature or other 

variables did not improve the explanation of variance in g. There was more unexplained 

variation in data from Quarrion with all functions than with Matong. 

4.4.3.2. Ball-Berry type models 

All the functions that had been compared as Jarvis type models, with Dor .,,/D, were 

improved by incorporating leaf photosynthesis (A) as a variable (Table 4.3). Only the 

functions of D with the constant k are presented, since they all gave better fits than when 

k was omitted. Models with functions of W gave poor fits when A was included as a 

variable, reflecting the correlation between decreasing photosynthesis and decreasing soil 

water availability. Inclusion of ca and r further improved both functions slightly. 

Functions with Dor .,,/D were equally good in all combinations. It was noted earlier that 

Table 4.3 Correlation coefficients (r2) for the Ball-Berry type models 

with various functions fitted by linear regressions to the field data of 

stomata! conductance. 

Function r2 r2 r2 
Matong Quarrion Average 

Ah 0.816 0.642 0.729 
Ah/ca 0.828 0.623 0.725 
Ah/(c - r) 0.828 0.604 0.716 

Al(k + D) 0.775 0.721 0.748 
A/[c/k + D)] 0.787 0.721 0.754 
Al[(c - r)(k + D)] 0.792 0.729 0.761 

A/.,,/(k + D) 0.771 0.724 0.747 

Al[c)(k + D)] 0.785 0.723 0.754 

A/[(c -r).,,/(k + D)] 0.788 0.726 0.757 
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functions h, k + D and 11...f(k + D) were all equally good at explaining most of the 

variance in g. Adding a second variable to the model either ca or A improved the model 

fit only slightly. Adding both ca or ca - r andA improved the model only incrementally. 

These results and the response of stomata to C02 (Morison & Gifford, 1983; Mott, 

1988), the response of stomata to evaporation rate rather than surface humidity (Mott & 

Parkhurst, 1991 ), which can be shown to be equivalent to a response function of ll(k + 

D) (Farquhar, 1978; Monteith, 1995) and the behaviour of the functions beyond the 

range of variables encountered here, lead to the conclusion that the best combination of 

variables in a stomatal model was of the Ball-Berry _type, 

(4.19) 

Careful attention to units is required in use of this model, such that all variables are in 

moles; g and g
0 

are expressed in mol.m-2.s-1, A is in µmol.m-2.s-1, ca and r are in 

µmol.mol- 1 and k and D are mmol.mol-1, which must all be scaled to moles to give the 

correct solution. This model was fitted to the field data from all days combined and for 

Table 4.4 Coefficients for the stomatal model 9 = 90 + a1AJ((c8 - r)(k + D) fitted to 

leaf data for Matong and Quarrion. A fixed intercept was used: 90 = 0.01. All -

indicates a fit to data from all days combined (as in Table 4.3). Individual dates 

indicate coefficients fitted for each day. Overall - is the regression correlation 

coefficient for all data with the model with coefficients for each day. 

Date Matong Quarrion 
k a r2 k a r2 

All 10.0 0.162 0.80 5.68 0.100 0.73 
06-Sep 3.69 0.093 0.89 8.45 0.139 0.76 
12-0ct 14.9 0.151 0.51 9.86 0.101 0.47 
17-0ct 14.7 0.138 0.58 32.l 0.200 0.39 
18-0ct 14.7 0.142 0.75 32.l 0.198 0.77 
24-0ct 2.60 0.113 0.81 4.82 0.093 0.66 
25-0ct 2.60 0.127 0.10 4.82 0.081 0.32 
26-0ct 2.60 0.136 0.60 4.82 0.099 0.49 
30-0ct 43.9 0.260 0.80 36.0 0.231 0.57 
31-0ct 43.9 0.279 0.77 36.0 0.272 0.85 
01-Nov 43.9 0.276 0.82 36.0 0.228 0.51 
Overall 0.92 0.82 
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each day separately. The model was over-parameterised for data of many individual 

days, so an intercept was assumed of g0 = 0.01. On days with a small range of D there 

was a mutual dependency between the parameters k and a1, which was overcome by 

grouping data of consecutive days to fit k and independently fit a 1 for each day (Table 

4.4). Direct comparison of the slopes between days and between cultivars is complicated 

by k varying, since k and a 1 are partially correlated. The values of k, which reflect 

stomatal sensitivity to D, were low following rain on the 24-26 October and increased as 

the soil water content decreased. The low regression coefficient in some data sets was 

due to little variation in conductance for those days, due to a small range of D. 

4.4.3.3. aE1aA Models 

Linear form of 'dEl'dA 

The linear form of 'dEl'dA model was fitted to the data assuming a constant value of A. 

(Table 4.5). For the Matong data set the model fit accounted for only slightly less 

variation than any of the Jarvis or Ball-Berry models, whereas the Quarrion data set was 

better described by the linear 'dEl'dA model than the original Ball-Berry model, but less 

well than some of the other modified Ball-Berry type models. Overall the linear form of 

the 'dEl'dA model accounted for only slightly less variation in stomatal conductance than 

other models. 

Fitting the linear form of 'dEl'dA model to data for each day separately improved the 

overall fit to the data (Table 4.5). However, as explained earlier, comparison between 

models with different numbers of parameters is not straight forward. The use of separate 

parameters for each day improves the explanation of variance in the data, but may not be 

of use for prediction unless the parameter values themselves can be predicted. 

Table 4.5 Correlation coefficients of the linear form of aeaA model fitted to 

field data of stomata! conductance. 

Function Matong Quarrion Average 
A/--J[(c - f)D] A. r2 A. r2 r2 

Constant A. 1544 0.782 869 0.667 0.724 

Variable A. 0.929 0.807 0.868 
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Fitted values of A. seem to be related to availability of soil water (figure 4.6). After a 

large rain event (33 mm) the values of A. for the Matong data increased for a few days 

and then returned to values similar to those prior to the rain. There was only a small 

change in A. for Quarrion. 
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Figure 4.6 Day to day variation of A. calculated from the linear form of oE/oA 
(solid symbols) or the averages of the full differential oE/oA (open symbols) 

models of stomata! conductance fitted to field data for the wheat cultivars Matong 

(circles) and Quarrion (squares). Also shown is the daily rainfall (bars). 

Full aaaA 

Values of the full differential of "dE!"dA calculated from each data point using the 

models of transpiration, leaf energy balance and leaf photosynthesis were very variable 

(figure 4.7). No relationship with any variables was observed in either the Matong or 

Quarrion data (not shown). 

Average values of A. were calculated from all data on each day for the full differential 

"dE!"dA model. These averages were lower than those calculated by fitting the linear form 

of "dEl"dA model, but varied in a similar manner (figure 4.6). This may seem contrary to 

expectations, since the linear model has larger values of "dA!"dc; than the full partial 
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differential model. However, the full model includes the leaf energy balance, so that 

(JE/(Jg and (JA/(Jg are altered by the subsequent change in leaf temperature. 
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Figure 4.7 Values of aeaA calculated using the leaf transpiration, energy balance 

and photosynthesis models for the Matong field data. 

The full (JE/(JA model was unable to explain much of the observed variation in leaf 

conductance, with low regression correlation coefficients of predicted and observed g 

(Table 4.6). Allowing a separate value of A. for each day increased the r2 for the Matong 

Table 4.6 Regression correlation coefficients (r2) of stomata! 

conductance predicted with the full aeaA model with a single A. 

for all days or a different value of A. for each day, with the data 

from Matong and Quarrion cultivars of wheat. 

Constant A 
Variable A 

Matong 
A. 

1420 

r2 

0.36 
0.61 
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Quarrion 
A. 

673 

r2 

0.06 
0.07 
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data, but made no change to the r2 of the Quarrion data. Despite the extra detail 

included in the full oE/oA model the regression correlation coefficients of predicted and 

observed g were lower than those obtained using the linear form of oE/oA model 

(Table 4.5). 

4.4.3.4. Predicted stomatal response to C02 

Modelled stomata! response to C02 concentration was predicted for the Ball­

Berry/Leuning model, the linear oE/oA model and the full oE/oA model (figure 4.8). 

Only the Ball-Berry/Leuning model gave predictions of stomata! response to C02 that 

matched experimental evidence (Morison & Gifford, 1983). The linear oE/oA model 

predictions were unrealistic. The full oE/oA model gave predictions that matched 

observations at low values of D, but unrealistic predictions at high D. 
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Figure 4.8 Modelled stomata! (g) response to C02 concentration as predicted by 

the Ball-Berry/Leuning model (BBL) and the Linear oE/oA model (left) and the full 

aEtaA model at different leaf-to-air vapour pressure differences (0) (right). 
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4.5. Discussion 

4.5.1. Stomata! response to air humidity 

There was little distinction between the various functions of D or h that were tried in 

the models of g, which accords with the conflicting results from other studies (Ball et al., 

1987; Leuning, 1990; 1995; Collatz et al., 1991; Lloyd, 1991; Aphalo & Jarvis, 1993). 

Since the basis for these models is not mechanistic but only correlative, it is not 

surprising that different data sets are best explained by different variables. Nothing 

should be inferred from the variables selected in terms of a mechanistic basis of stomatal 

behaviour. Comparisons of D and h as the driving variables for stomatal response to 

humidity have shown that neither variable is entirely satisfactory (Aphalo & Jarvis, 1991; 

Collatz et al., 1991). Indeed, studies in helium and oxygen (Helox) in place of air (Mott 

& Parkhurst, 1991 ), have shown that stomatal conductance is proportional to the 

transpiration rate, rather than any measure of the humidity at the surface. Given that 

transpiration is directly related to D rather than h, in a normal atmosphere, the former is 

a better choice where other criteria cannot distinguish between them. The ability of h to 

explain variation of stomatal conductance when water vapour concentration is varied at a 

constant temperature (Collatz et al., 1991), is of little value in field situations where most 

diurnal variation of humidity is caused by changes in temperature rather than vapour 

concentration. In this context, the Lohammar (1980) function, ll(k + D), was the best 

choice to describe the stomatal response to humidity, which concurs with the conclusions 

of Leuning ( 1995) in his appraisal of the Ball-Berry model. 

Functions of humidity (either D or h) were the most significant in explaining the 

variation of g, which is not surprising since variation in C02 concentration and light 

intensity was minimised in the sampling strategy. Similar results were obtained by 

Thorpe (1980), who found that natural variations of C02 concentration were small 

compared to variations of D and I, allowing a simple model with only two variables to 

account for much of the variation of g, under well watered conditions. In many field 

situations, at least where canopy air is well mixed, such simple models may be sufficient, 

since diurnal variation is dominated by changes in light and temperature, while water 

vapour and C02 concentrations vary much less. In forests, however, these variables may 

be important although they are not always measured (Whitehead et al., 1981). 
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4.5.2. Use of A to predict g 

The results of this study confirm the general applicability of using A as a variable in 

models of g (Ball et al., 1987; Leuning, 1990; 1995; Collatz et al., 1991; Lloyd, 1991; 

Aphalo & Jarvis, 1993), which improved the model predictions more than any other 

variable after D or h. The basis of using A as a variable is the observed correlation 

between A and g, which is maintained with variation in light, nutrient levels or leaf age 

(Wong et al., 1979). A mechanistic basis for this correlation is unknown. Gas exchange 

studies with electron transport inhibitors have shown that stomatal conductance and 

photosynthesis can be decoupled (Sharkey & Raschke, 1981 ). Other studies with 

molecular antisense techniques directed at the ribulose-1,5-bisphosphate carboxylase/ 

oxygenase (Rubisco) small subunit have shown that photosynthetic capacities of leaves 

could be reduced, without affecting stomatal conductance (Quick et al., 1991; Hudson et 

al., 1992). These results preclude a direct linkage between Rubisco photosynthetic 

capacity and stomatal conductance, requiring some other tightly coordinated link. 

Because such a link seems to occur in the field, models of the Ball-Berry type were 

significantly better than the Jarvis-type models, and are sufficiently simple to allow them 

to be easily incorporated into models of canopy photosynthesis and transpiration. 

4.5.3. "dE/"iJA models 

The linear form of aEtaA model was only slightly worse at predicting leaf 

conductance than the other functions. Similarly Lloyd (1991) and Aphalo (1993) found 

that models with 11../D were good predictors of leaf conductance. 

Significant improvements were obtained by fitting separate values of A. for the linear 

form of the aEtaA model for each day. Similar values of A. were obtained using the full 

aEtaA model. Interpreting the cultivar differences in the values of A. is interesting. 

Quarrion, the cultivar with more conservative water use as a result of lower stomatal 

conductance, had lower values of A. than the cultivar Matong. The values of A. of 

Matong increased dramatically after the large rain event (October 22, 1990), but there 

was little response in Quarrion. The significance of these different responses is limited, 

since wheat cultivars have been selected for many traits other than adaptation to the 

environment. However this pattern fits with the speculated ecological significance of A., 

which is expected to decrease with declining soil water availability (Cowan, 1982; 1986). 

An alternative explanation for the increase in A. is that it may have been somehow related 
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to physiological changes associated with anthesis which occurred on 20 October in both 

cul ti vars. 

The 'dE/i)A models predict an increase in leaf conductance in response to increasing 

C02, which is contrary to observations (Morison & Gifford, 1983) and predictions of the 

Ball-Berry model (Leuning, 1995). This is not surprising, since there has been little 

selective pressure through evolution for plants to optimise water use with respect to 

carbon gain (and hence maintain a constant 'dEl'dA) with changing C02 concentrations. 

It does not invalidate the use of the 'dEl'dA theory at steady C02 concentrations. 

However, it does render these models, as presented here, unsuitable for analysing or 

predicting leaf conductance with changing C02 concentrations. 

The inability of the full 'dEl'dA model to describe the observed variation in stomata! 

conductance may be attributed to a combination of the stochastic nature of conductance 

and the highly sensitive partial differentials in the model. The 'dEl'dA model may have 

performed better if averages of the variables were used in place of the actual data. While 

the environment may fluctuate rapidly the biological response of stomata and 

photosynthesis is considerably slower, so that at an instant stomata! conductance may not 

reflect the current environment but reflect the average state of the environment over the 

preceding period, eg. 15 minutes. An extended optimisation model might include 

constraints associated with the dynamics of stomata} response. 

Comparison of the performance of the chosen linear form of 'dEl'dA model with the 

full version, suggests that the ability of the former, to describe much of the variation in 

leaf conductance, was probably due to the coincidental form of the analytical solution 

containing essential elements. The assumptions made in the linear version are not trivial 

and indeed when they were realistically incorporated into the full version of the model, 

the model's performance was poor. Incorporation of the full 'dEl'dA model as a sub­

process into canopy models is not warranted. 
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4.6. Conclusions 

Comparison of several models identified water vapour concentration of the air as the 

most important variable for predicting leaf conductance in. the field under conditions of 

saturating light. No distinction could be made between functions of D or h. However, 

based on results of other comparisons, functions of D are preferable to those of h. 

Despite the additional complexity of using A as a variable, its inclusion in models of g 

is warranted if A is measured, since it encompasses effects of varying light intensity, 

temperature, plant nutrition and leaf age, which would otherwise be difficult to 

incorporate. However, in the absence of direct measurements of A, it remains to be seen 

how well models can predict photosynthesis in the field for use in models of stomata! 

conductance. 

The linear form of 'dE!'dA model was as good at predicting leaf conductance as other 

functions. This ability was a fortuitous result of the form of the analytical solution, 

which contains the essential elements for describing the response of conductance to the 

environment. The full 'dEl'dA model was poor at explaining or predicting leaf 

conductance, due to the sensitive partial derivatives of the model and the stochastic 

nature of stomatal conductance. 

From this work, it is concluded that the best model to describe leaf conductance was 

a modified Ball-Berry type model, that includes a hyperbolic response to D and c0 , and a 

linear function of A (eg. g = g0 + a1Al[(c0 - f')(k + D)]). 
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4. 7. Appendices: 

4.7.1. Partial derivatives of the a E/iJA model 

The response of photosynthesis to a change in leaf conductance is via the effect on 

the intercellular C02 concentration (c), 

(4.20) 

where (iJc/iJg)r
1 

can be separated into components caused by the direct effect of a 

change in leaf conductance (at constant A) and the indirect effects via the change in 

photosynthesis (at constant g); 

(ac.J (ac.J (ac.) (aAJ 
a~ :r, = a~ :r,.A + a~ Ti.g ag :r, • 

(4.21) 

Combining these two expressions and rearranging, an expression is found that can easily 

be evaluated (Farquhar et al., 1978; Cowan & Farquhar, 1977), 

(
i)AJ (dC;J 

(i)AJ - dC; 7i i)g Ii.A 

i1g Ti 1_(aAJ (ac;) ' 
i1c; 7i iJA 7i.g 

(4.22) 

where for the linear model (Cowan, 1977) 

(4.23) 

or for the full model at light saturation (Farquhar et al., 1980) 

(
i1AJ -V K' +r. 
i1c; 7i - ( K' + p} . 

(4.24) 
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In tum the variation of ci in eq. 4.22 can be expanded according to the partial response 

of ci to a change in leaf conductance 

(ac.) = l.6A 
d~ 1j,A _g_2_ ' (4.25) 

and the partial response of ci to a change in photosynthesis is 

(ac.) = 1.6 
a~ 1j.g g 

(4.26) 

Also, the response of E to a change in leaf conductance (at constant temperature) is 

(4.27) 

Equations incorporating the leaf energy balance are found in the Appendix I of Cowan & 

Farquhar (1977). (Note the typographical error in the numerator of their equation 17, 

where the terms should be subtracted rather than added.) 

4.7.2. Derivation of the combination equation with isothermal 
net radiation. 

The water vapour flux is given by 

(4.28) 

where w is the water vapour concentration (mol.mol-1) of intercellular air spaces (wi) and 

ambient air (wa) outside the boundary layer of resistance rb. rs is the stomatal resistance. 

The sensible heat flux (H) is given by 

(4.29) 
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where CP is the molar heat capacity of air, rbH is the boundary layer resistance to heat 

transfer and !l.T is the difference between leaf temperature and air temperature outside 

the boundary layer (T1- Ta). Available energy (Q) can be expressed as 

(4.30) 

where Q
0 

is the isothermal radiation (available energy if leaf temperature were equal to 

air) and the last term accounts for the radiation exchange as a result of the difference 

between leaf and air temperatures. Introducing the concept of radiative conductance 

(g, = 4<JE1ea/Ta3/CP), the above equation can be rewritten as 

(4.31) 

Rearranging eq. 4.31 to obtain !l.T and using the energy balance (Q = H + LE), 

(4.32) 

and, substituting for Q using eq. 4.16, 

!l.T- r,,H(Qo - g,Cp!l.T- LE) - Q, -LE - r,,"H(Qo -LE) 
- cp - cp(gbH + g,) - cp 

(4.33) 

where gbH is the boundary layer conductance to sensible heat transfer (llrbn) and r*bH is 

the combined resistance to sensible and radiative heat transfer in parallel (ll(gbH + g,)). 

Using the approximation of W; = w'a + (s/P)!l.T, where w' is the saturated vapour 

concentration ands is the change in saturated vapour pressure with temperature (de/dT), 

the combination equation is derived from eq. 4.28, and combined with the expression for 

!l.T (eq. 4.33), 

(4.34) 

Defining D as vapour concentration deficit (w'a - wa) and E as sU(CPP), the above 

equation can be rearranged to give, 
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E = (e/ L)'b~(Q, -LE)+ D. 

r, + rb 
(4.35) 

Collecting terms of E, gives 

(4.36) 

which can be rearranged to 

E= Erb*HQ)L+.D. (4.37) 
T, + rb + Efj,H 

Leaf temperature with isothermal radiation. 

Combine expressions for 11T (eq. 4.33) with the above isothermal combination 

equation, 

( 4.38) 

which simplifies to 

(4.39) 
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Summary 

Stomatal conductance is well described by models that correlate conductance with 

photosynthesis. Extension of these models to describe and predict canopy conductance 

will improve the understanding of vegetation-atmosphere interactions. 

Concurrent measurements of gas exchange at both the leaf and canopy scale were 

used to investigate the scaling of conductance from leaves to canopies. The Ball-Berry 

model was used to facilitate this scaling, since it can accommodate the within-canopy 

variation of light intensity and conductance. The model was fitted to data at both the 

leaf and canopy scale. Coefficients derived from fitting the model at the leaf level were 

used to predict canopy conductance. 

The model accounted for much of the variation in canopy conductance. Coefficients 

derived from fitting the model to leaf and canopy scale data were different. Use of the 

coefficients derived from the leaf scale data allowed the model to predict the diurnal 

variation in canopy conductance, but the exact magnitude of canopy conductance was 

not accurately predicted. The disagreement was as much a reflection of the inherent 

uncertainty in data of canopy conductarice as an inadequacy of the model. 

Predictions of canopy transpiration were within 10% of measurements and often 

better, although the aerodynamically smooth canopies used in this experiment had low 

sensitivity of transpiration to changes in surface conductance. 

The Ball-Berry model can be successfully used to model canopy conductance. The 

model provided a means to use leaf-scale data to predict canopy conductance. However, 

this model uses photosynthesis as a variable, which is not strictly independent. Simple 

and accurate models of canopy photosynthesis are required to make independent 

predictions of canopy conductance. Understanding the nature of the variation in the 

stomatal model coefficients will improve the utility of this approach. 
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5.1. Introduction 

The study of evaporation from vegetation is an inter-disciplinary field of research 

encompassing meteorology and physiology. Both disciplines are aware of each other's 

work, yet the complexities are often greatly simplified to a 'black box' parameter in 

models of the process: for meteorologists this is a surface resistance and for physiologists 

a boundary layer conductance (usually in different units of s.m-1 and mol.m-2.s-I, 

respectively). 

Attempts to model climate and predict climate change has led to a recognition that an 

improved representation of surface resistance is needed. Similarly attempts by plant 

breeders to improve agricultural production through altered stomatal conductance has 

led to a need for better representation of canopy boundary layers and their effects on 

canopy evaporation (Farquhar et al., 1989). Physiologists have long recognised the 

influence of C02 concentration (Morison & Gifford, 1983) and other environmental 

factors on stomatal conductance and have developed models to describe these responses. 

The challenge is to scale these physiological models to be applicable at the canopy level, 

while ensuring that they be sufficiently simple that they are useable. 

A common link between physiology and meteorology in controlling canopy 

evaporation has been through the Penman-Monteith equation (Penman, 1953; Monteith, 

1965) and several other forms of the combination equation (Stewart, 1983). They 

combine the processes of energy supply, turbulent transport and stomatal regulation into 

a single layer representation of canopy evaporation. The complexities of real canopies 

are disguised in the simplicity of the Penman-Monteith equation, but re-emerge when 

defining appropriate values for the parameters (Finnigan & Raupach, 1987; 

McNaughton, 1994; Raupach, 1995). 

Three issues have led to modifications of the Penman-Monteith equation. 1). In the 

original formulation of the Penman-Monteith equation, Monteith (1965) proposed that 

the profiles of temperature and water vapour concentration be extended to an apparent 

source coinciding with the apparent sink for momentum at which wind speed would be 

zero. Thom (1972), however, demonstrated that there are differences in the level of the 

apparent sources and sinks for heat, water vapour and momentum transfer and that 

ignoring these differences would affect the definition of the surface resistance. Definition 

of the aerodynamic resistance to include the additional resistance to heat and water 
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vapour transfer that is not encountered by momentum transfer is preferable to having a 

significant aerodynamic component in the smface resistance (Brutsaert, 1982). 2). The 

single layer assumption of the Penman-Monteith equation is not valid in canopies where 

soil fluxes are significant. Shuttleworth & Wallace (1985) developed a two-layered 

model, which can be used in such situations. More recently, Raupach ( 1995) described 

definitions of the resistance parameters to include both plant and soil components for use 

in a single layered model. 3). From its inception the concept of surface resistance of a 

canopy was considered a mainly physiological parameter (Monteith, 1965), which was 

the summation of all the individual leaf conductances in parallel (Monteith, 1973). 

However, McNaughton (1994) showed that this was just one among many possible 

schemes available for averaging leaf parameters to obtain bulk canopy values, depending 

on the purpose of the scaling. Despite these different definitions, Raupach ( 1995) 

showed that several different schemes produce very similar results. Yet determining 

these resistances remains a serious limitation to using the Penman-Monteith equation as a 

predictive tool. It is to this latter point that this chapter is devoted. 

In practice measuring the stomata} conductance of all leaves in a canopy or obtaining 

truly representative samples is impossible. Instead several aggregation schemes have 

been adopted and used in conjunction with different canopy sampling strategies (eg. 

(Bailey & Davies, 1981; Whitehead et al., 1981; Avissar, 1993). A comparison of 

several methods found that these were unsatisfactory, since they did not account for 

seasonal changes in leaf area of the canopy or the distribution of light with leaf angle in 

the canopy (Rochette et al., 1991 ). Another approach has been to parameterise models 

of leaf conductance (Jarvis, 1976) from measurements in canopies. A stomatal model 

combined with a model of the irradiance of sunlit and shaded leaves, was a significantly 

better approach than direct scaling of stomata} measurements (Rochette et al., 1991). 

However, this approach overestimated canopy conductance when soil water content was 

low (Kim & Verma, 1991b), because soil water content was not explicitly included as a 

variable in the model. 

The correlation between photosynthesis and conductance (Wong et al., 1978) has led 

to improved models of stomata} conductance (Ball et al., 1987; Leuning, 1990; 1995; 

Collatz et al., 1991). These have been incorporated into several canopy models (Wang 

& Jarvis, 1990; Reynolds et al., 1992; Leuning, 1995), but have not been tested with 

concurrent measurements of fluxes from both leaves and canopies. In only a few cases 

has this approach been used at the canopy level in conjunction with data. The 
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coordination between stomata! conductance and photosynthesis was used by Kim & 

Verma (1991a) to successfully model surface conductance in a grassland canopy using 

separate sunlit and shaded leaf fractions. It has been used in a multilayer canopy model, 

to explore the effects of increased atmospheric C02 concentration (Reynolds et al., 

1992) and in a big leaf model to predict daily water use in pine forests (McMurtrie et al., 

1992), but not compared with flux measurements. Further developments of big leaf 

models have been proposed by Sellers et al. (1992) and Amthor (1994). The 

applicability of these stomatal models to describe canopy conductance and the potential 

to use these models to scale from leaves to canopies remains to be demonstrated on a 

range of different vegetation types, with intensive concurrent measurements of leaf and 

canopy conductances and fluxes. 

In the previous chapter (Four) several models of stomata! response to the 

environment were compared with a data set of leaf conductance measurements in a 

wheat paddock. Models that included leaf photosynthesis as a parameter were better 

able to explain the observed variation of stomata! conductance than models without leaf 

photosynthesis. It was concluded that the Leuning ( 1995) modified version of the Ball­

Berry model was the best model. 

The objective of this work was to demonstrate the applicability of leaf stomata! 

models to describe canopy conductance and to explore the scaling up of leaf stomatal 

measurements to canopy conductance and transpiration. The work presented in this 

chapter describes the application of the Leuning modified Ball-Berry stomata! model to a 

big leaf representation of a canopy. Predictions of canopy conductance were combined 

with the Penman-Monteith equation to predict canopy evaporation. Comparisons are 

made with measurements of evaporation, transpiration, and calculated surface and 

canopy conductances obtained with the Bowen ratio technique and ventilated chambers 

in a paddock of wheat. 
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5.2. Model 

5.2.1. Scaling Conductance 

The previous chapter (4) compared several models of stomatal conductance with 

different combinations of variables. It was concluded that the best model of stomatal 

conductance was the Ball-Berry model (Ball et al., 1987) as modified by Leuning (1995) 

(referred to as the BBL model hereafter), 

(5.1) 

where g188 is the leaf conductance modelled by the BBL model, A1 is leaf photosynthesis, 

cs is the atmospheric C02 concentration at the leaf surface, r is the C02 compensation 

point of photosynthesis, D 
0 

is the leaf-to-air vapour concentration difference (the 

difference between the saturated vapour concentration at leaf temperature and the 

vapour concentration of the air at the leaf surface), k is a constant, g
0 

and a1 are the 

intercept and slope of the regressions respectively. Note that correct use of this equation 

and similar equations in this chapter require all variables in units of moles, so that scaling 

factors must be applied where the variables are typically given in µmol or mmol (refer to 

the List of Symbols for units of each variable). 

The direct application of this stomatal conductance model to big leaf representations 

of canopies, is based on the conservation of the ratio of A/g1, when either leaf age, 

nutrient status or light varies (Wong et al., 1978; 1979; 1985c; 1985b; 1985a). The ratio 

does vary with cs and D 
0

, which are explicitly incorporated in the stomatal model. 

Variation of leaf age and light are the principal sources of spatial variation of stomatal 

conductance in a canopy, while cs and D
0 

vary much less. Thus it is assumed that these 

models describe the behaviour of all leaves in the canopy and therefore that the ratio of 

canopy photosynthesis to conductance will also be maintained, ie. Ajgc. Ac is defined as 

the sum of photosynthesis from all leaves of canopy leaf area index (Lc) (ie. gross canopy 

photosynthesis or net canopy C02 flux plus respiration), 

(5.2) 
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and similarly for canopy conductance, 

(5.3) 

Combining these expressions with the BBL model and replacing the surf ace vapour 

deficit and C02 concentration with those of the air in the canopy results in the expression 

(5.4) 

where values of ca were obtained directly from measurements at the top of the canopy 

and were assumed to represent the values at the notional canopy surface. The response 

of r to temperature was calculated with an Arrhenius function of temperature with the 

activation energy given in the List of Symbols. D1, the leaf-to-air vapour concentration 

difference, was calculated from measured canopy leaf temperature (Ts) and the water 

vapour concentration of the air (wa) measured 0.25 m above the top of the canopy, 

assumed to be similar to wa in the canopy. The stomatal model requires gross canopy 

photosynthesis as an input variable, which was calculated from measurements of net C02 

flux and estimated respiration as described in the Experimental Methods section. In a 

subsequent chapter models of conductance, photosynthesis and the energy balance were 

combined and solved concurrently. 

The model was applied to canopies by assuming a big leaf representation. Several 

different parameterisation schemes were compared. Parameters were obtained from 

fitting the model to either the leaf data from all days, leaf data from each day or from the 

canopy data for each day. The parameters g
0

, a1 and k obtained by fitting the models to 

the leaf data from each day and all days combined are given in Table 5.1. 
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Table 5.1 Coefficients for the stomata! model (eq. 5.1) fitted to leaf data for 

Matong and Quarrion. A fixed intercept was used: g0 = 0.01. All - indicates a fit to 

data from all days combined. Individual dates indicate coefficients fitted for each 

day. (Reproduced from Table 4.4). 

Date Matong Quarrion 
k a r2 k a r2 

All 10.0 0.162 0.80 5.68 0.100 0.73 
06-Sep 3.69 0.093 0.89 8.45 0.139 0.76 
12-0ct 14.9 0.151 0.51 9.86 0.101 0.47 
17-0ct 14.7 0.138 0.58 32.1 0.200 0.39 
18-0ct 14.7 0.142 0.75 32.1 0.198 0.77 
24-0ct 2.60 0.113 0.81 4.82 0.093 0.66 
25-0ct 2.60 0.127 0.10 4.82 0.081 0.32 
26-0ct 2.60 0.136 0.60 4.82 0.099 0.49 
30-0ct 43.9 0.260 0.80 36.0 0.231 0.57 
31-0ct 43.9 0.279 0.77 36.0 0.272 0.85 
01-Nov 43.9 0.276 0.82 36.0 0.228 0.51 

5.2.1.1. Bowen Ratio Data 

The calculated canopy conductance was compared with the surf ace conductance 

(GcPM) calculated by inverting the Penman-Monteith (PM) equation, 

(5.5) 

where E is the change of latent heat of saturated air with a change in sensible heat as 

temperature changes (sLM/(PCP)), s is the rate of change of saturated water vapour 

pressure with temperature, LM is the molar latent heat of evaporation, P is atmospheric 

air pressure, CP is the molar specific heat of air at constant pressure, raH is the 

aerodynamic resistance to turbulent transfer of sensible heat between the surf ace and the 

reference height ( 1.0 m above the canopy), calculated from sonic anemometer 

measurements and stability corrections as described in the appendix, Q is the available 

energy (R-G) absorbed by the canopy, D, is the water vapour concentration deficit of the 

air at the reference height and Ee is the measured canopy transpiration (total evaporation 

less soil evaporation, Er- Es) (described in Experimental Methods section). 
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Aerodynamic conductance to sensible heat transfer (gaH = llra8) from the canopy to 

the reference height was calculated from sonic anemometer data of wind speed (u) and 

friction velocity (u.). Concurrent measurements of sensible heat flux were used to 

correct for atmospheric stability using the Monin-Obukhov theory, which results in the 

expression (see appendix for more details), 

(5.6) 

where raH is the aerodynamic resistance, k is von Karman's constant, z - d is height above 

the nominal crop surface, z08 is the roughness length of the canopy for turbulent heat 

transfer, 'I'~~) is an integral function to describe atmospheric stability and RTIP is a 

conversion factor to molar units, which is derived from the universal gas equation, PV = 

nRT. Resistance in a flux equation responding to units of mole fraction (rM) are related 

to resistance for a flux dependent on density difference (rs-) by several interchangeable 

expressions, 

(5.7) 

where Ma is the molecular mass of air (29 g.mol-1), Pa is the actual density of air 

(including water vapour) and Ca is a molar concentration of air (pjMa, mol.m-3). I have 

chosen to express all resistances and conductances in molar units as this is the accepted 

practice in plant physiology. Use of units associated with density gradients, preferred by 

meteorologists, would have been equally valid. 

The aerodynamic resistance to turbulent transfer of heat (ra8 ) and water vapour (rav) 

are assumed equal, but are greater than the resistance to momentum transfer 

(raH = rav > raM) due to the bluff body forces encountered by momentum transfer that 

have no analogy in the transfer of other entities (see appendix) (Thom, 1972). 

Direct comparisons of KcPM with the modelled canopy conductance are complicated by 

the former not being an entirely physiological variable, when combined with the above 

definition of aerodynamic resistance (Raupach & Finnigan, 1988; Baldocchi, 1991; 

McNaughton, 1994). It contains some within-canopy resistance to transport and is 

affected to some extent by the wind speed and canopy structure as well as the radiation 
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regime. However in the canopy used in this study the physiological resistances are much 

greater than the within-canopy resistances so that these differences probably have little 

net effect (Finnigan & Raupach, 1987; Raupach, 1995). This is verified in Chapter 

Eight. 

Values of the surface conductance (GcPM) inferred from measurements of transpiration 

can be very variable in some situations. This problem arises when the aerodynamic 

resistance is large (ie. over smooth crops) and predictions of transpiration from the PM 

equation are relatively insensitive to the value of the surface conductance and so 

conversely the inferred surface conductance is very sensitive to small errors in the 

measured values of transpiration. Thus, this formulation of the PM equation makes it 

difficult to evaluate a model of canopy conductance. Comparisons of canopy 

conductance and surf ace conductance are subject to large influence from errors in the 

transpiration measurements, and comparisons of modelled and measured transpiration 

are relatively insensitive to the canopy conductance values. Comparisons of both 

conductance and transpiration have been used in this chapter. 

5.2.1.2. Tent Data 

Inside the ventilated tent, gradients typical of a normal canopy, are prevented from 

developing by mixing fans, rendering calculation of a suitable gaH for the PM equation 

difficult. The evaporation rate can be related to an equation describing the flux by a 

concentration gradient and resistances, 

(5.8) 

Rearrangement of this equation allows an alternative surface conductance (GcD) to be 

calculated from the measured Ee, D1 and an assumed value of gaH" A reasonable fit was 

obtained by assuming an infinite canopy boundary layer conductance, so no further 

assumptions regarding the value of gaH were used. This surface conductance was used 

for comparison with the modelled canopy conductance in the tent. 
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5.2.2. Canopy Transpiration 

Modelled canopy conductance was used in the Penman-Monteith equation to predict 

canopy transpiration, 

Ee = EraHQ/ L M + Dr . 
t;, +(E +l)raH 

(5.9) 

Effects of the transpiration rate on surface temperature, the emmision of long wave 

radiaton and the energy balance were ignored, but are considered in Chapter Eight. 

Equilibrium Evaporation 

When the canopy aerodynamic conductance is very low, the surf ace and the 

atmosphere are said to be decoupled (McNaughton & Jarvis, 1983). The resultant 

evaporation rate is known as equilibrium evaporation (Eeq), 

(5.10) 

However, the converse is not true. When the measured evaporation rate is the same as 

the equilibrium evaporation rate the surface is not necessarily decoupled. It is a 

biological coincidence that measured evaporation is often close to the equilibrium 

evaporation rate, that arises from the response of stomata to radiation. Such 

observations have occasionally been falsely interpreted as indicative of minimal control of 

evaporation by stomata. 

The sensitivity of evaporation to changes in stomata! conductance is expressed in the 

decoupling coefficient (Q), with values which range from zero for rough canopies, that 

are completely coupled to the atmosphere to one for canopies that are aerodynamically 

smooth and are completely decoupled (McNaughton & Jarvis, 1983; 1986). It is 

calculated as, 

(5.11) 
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5.3. Experimental Methods 

Details of the experimental methods were given in chapter 3. A brief description is 

repeated here. 

Concurrent measurements of stomatal conductance and photosynthesis on leaves and 

total canopy evaporation and net C02 flux were made in two paddocks of wheat in 1990. 

The two wheat cultivars used were similar, except for their stomatal conductance and 

hence transpiration efficiency (ratio of instantaneous photosynthesis to transpiration). 

Cultivar Matong had greater stomatal conductance than cultivar Quarrion. 

Measurements were made between 12 October and 1 November in the weeks around 

anthesis (20-22 October). Fortnightly harvests of 0.5 m2 were used to determine the 

canopy leaf area. 

Gas exchange measurements were made using a Li-Cor 6200 portable photosynthesis 

system on flag leaves oriented perpendicular to the sun's rays. 

Canopy fluxes were measured by two methods in each paddock: Bowen ratio 

systems; and 2.3 m2 ventilated chambers (tents). Half hour running means of two fifteen 

minute measurement intervals were available from the Bowen ratio systems and readings 

each 12 minutes from the tents. 

Soil Evaporation 

Soil evaporation was estimated over intervals of two weeks, using the method of 

Cooper (1983). This involves measuring changes in the soil water profile both beneath 

the crop and from bare soil. Measurements of light interception by the canopy are used 

to convert bare-soil evaporation to soil evaporation from beneath the crop. 

Daily soil evaporation was calculated by interpolation of the fortnightly estimates 

using measurements of pan evaporation as a scaling factor. Diurnal variation of soil 

evaporation was assumed to be in proportion to the calculated equilibrium evaporation 

from the soil beneath the canopy while the soil surface was wet (Black et al., 1970; 

Ritchie, 1972). Cumulative evaporation and rainfall was used to model the water 

content of the top 5 cm of soil. As the soil surface dried below a threshold water content 

the evaporation rate from the soil was reduced in proportion to the surface moisture 

content. Soil evaporation from inside the tents was assumed to be the same as outside 

the tents, since the enhanced turbulence in the tent would compensate for the chamber 
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pressure suppression of soil fluxes. Canopy transpiration was calculated by deducting 

soil evaporation from the measured total evaporation. 

Gross Canopy Photosynthesis 

Gross canopy photosynthesis was calculated from measurements of net canopy C02 

flux with an estimate of canopy respiration added. Measurements of C02 flux at night 

were assumed to represent canopy respiration, which were corrected for the effect of 

temperature on respiration to determine daytime canopy respiration (see Chapter Seven). 

Soil respiration was calculated to be suppressed by 70% inside the tents due to over­

pressure (Kanemasu et al., 1974). Independent measurements of soil respiration were 

used to adjust the Bowen ratio data of C02 fluxes to determine gross canopy 

photosynthesis (see Chapter Seven). Gross canopy photosynthesis was calculated by 

adding an estimate of canopy plus soil respiration to the measured net canopy C02 flux. 
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5.4. Results 

5.4.1. Aerodynamic Conductance 

Data were available for parts of eight days during the measurement period. Data 

combined from all these days revealed that gaH was strongly correlated with wind speed 

and that stability corrections ('PH) were negligible compared to the height term (eq. 5.6, 

ln[(z-d)/z
0
H] = 3.6) for u1 > 1.3 m.s-1 (figure 5.1). Most of the corrections were for 

unstable conditions and hence positive, enhancing gaH· A few corrections were for stable 

conditions, which occurred in late afternoon when u1 < 1.3 m.s-1• 
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Figure 5.1 Aerodynamic conductance to sensible heat transfer from the canopy to 

the reference height (1 m above the canopy) (g8 H), calculated from sonic 

anemometer measurements of friction velocity and wind speed. Corrections for 
atmospheric stability (''I' H) were minimal at wind speeds greater than 1.3 m.s-1, but 

sometimes significant at slower speeds. 
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Based on these observations a simple regression equation (gaH = 0.85u1, for 

u1 > 0.4 ms-1, r2 = 0.87) was used to calculate gaH from measurements of u for periods 

when direct measurements of u. or H were not available. At these times data of u were 

obtained from either cup anemometer measurements or from hourly data of wind run 

from the weather station. Conversion from wind speed at the height of measurement to 

u1 was achieved assuming neutral stability and a logarithmic wind profile (eq. 5.23). 

5.4.2. Surface Temperature 

An alternative expression to calculate the aerodynamic conductance to sensible heat 

transfer (gaH) is obtained from that for the sensible heat flux 

(5.12) 

(5.13) 

where T.r and T, are the surface temperature and the air temperature at the reference 

height, respectively. 

Values of the aerodynamic conductance to sensible heat transfer calculated from the 

sensible heat flux (gaJH)) (eq. 5.13) and from wind speed measurements (gaJu)) (eq. 

5.6), were different (figure 5.2A). This highlights the difficulties of using surface 

temperature measurements in the calculation of gaH• despite the accuracy of the 

measurements. Another manifestation of this problem appeared in the discrepancy 

between the time at which H became negative (15:30) and the time at which air and 

surface temperatures were equal (14:30) (figure 5.2C). 

These discrepancies were resolved by separating H into soil and foliage components 

(figure 5.2B). Soil sensible heat flux (Hs) was calculated by an energy balance equation, 

from the soil evaporation (Es) and soil net radiation (Rs) estimated from a canopy 

extinction coefficient for net radiation (0.4/sin~max) (Denmead, 1976), and the measured 

ground heat flux (G), 

(5.14) 

Sensible heat flux of the foliage (H1) was calculated from the energy balance, 
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(5.15) 

and closely matched H calculated from the measured gaJu) and surface temperature, 

Hju) (eq. 5.12) (figure 5.20). Calculation of gaJH) from H1 and the surface 

temperature (eq. 5.13) was then in accordance with gaJu) calculated from the wind 

speed measurements (figure 5.2A). Accounting for the sensible heat flux from the soil 
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Figure 5.2 A. Comparison of aerodynamic conductance to sensible heat transfer 

(gaH> calculated from wind speed measurements, gaH(u) (--), or surface 

temperature measurements and total sensible heat flux, gaH(H) (--Q-), or the 

foliage sensible heat flux, gaH<HJ(···•···). B. Measured total sensible heat flux (/-1) ( 

) and soil sensible heat flux, H5 (-o-). C. Measured temperature of the canopy 

surface, T5 (-), and of the air 25 cm above the canopy, Ta(·····-). D. Foliage 

sensible heat flux calculated from surface temperature and gaH(u), H,(u) (-a-) 

and from the energy balance, H,(EB) (-e-). Data are from the Matong crop on 25-

0ct-90. 
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also resolved the discrepancy in the time of day at which surface and air temperatures 

were equal (figures 5.2C & D). 

Similar discrepancies were observed in the data from other days, but were not always 

resolved so well. The data of gaH calculated from wind speed measurements were 

assumed to be correct and were used for subsequent calculations. 

5.4.3. Modelling Canopy Conductance 

The BBL stomatal model (eq. 5.4) was fitted to canopy data from the tents and the 

Bowen ratio systems by linear regressions of gc against Aj((c
0 

+ r)(k + D1)) assuming an 

intercept of g
0 
= 0.01. gc was calculated from canopy transpiration and Ac was gross 

canopy photosynthesis (ie. including canopy respiration). Typically data of gc before 

9:00 did not fit the linear regression model and were discarded from the fitting process 

(figure 5.3). Similarly data from late in the day had high uncertainty and were not used 

in fitting. Anomalous data points such as those circled in figure 5.3 were also discarded. 
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Figure 5.3 An example of canopy conductance from Bowen ratio measurements 

of transpiration plotted against the BBL stomata! model index. Data early in the 

morning were affected by evaporation of dew and were discarded from the fitting 

routine. Anomalous data points, circled were also discarded. The fitted regression 

shown is 9c = 0.01 + 0.161 AJ((c8 - D(6.78 + D~). Data are from the Matong crop 

measured by the Bowen ratio system on 13-0ct-90. 
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Coefficients for the model fits are given in Tables 5.2 & 5.3 for the tent and Bowen 

ratio data, respectively. 

Table 5.2 Coefficients for the stomata! model (eq. 5.4) fitted to Tent canopy data 
for Matong and Quarrion. A fixed intercept was used: g0 = 0.01. Individual dates 
indicate coefficients fitted for each day. 

Date Matong Quarrion 
k a k a 

12-0ct 
13-0ct 22.2 0.186 7.59 0.095 
17-0ct 
18-0ct 16.6 0.115 7.21 0.090 
24-0ct 5.87 0.097 29.8 0.199 
25-0ct 8.52 0.112 15.6 0.148 
26-0ct 11.6 0.115 11.0 0.108 
30-0ct 46.9 0.247 34.7 0.212 
31-0ct 40.4 0.208 14.1 0.135 
01-Nov 13.3 0.098 17.9 0.117 
02-Nov 5.36 0.064 9.42 0.093 

Table 5.3 Coefficients for the stomata! model (eq. 5.4) fitted to Bowen ratio 
canopy data for Matong and Quarrion. A fixed intercept was used: g0 = 0.01. 

Individual dates indicate coefficients fitted for each day. *The coefficients were 
mutually dependent, so k was set by combining with the data of the previous day. 
+The coefficient was at the imposed limit of k > 1.0. 

Date Matong Quarrion 
k a k a 

12-0ct 3.78 0.125 4.95 0.078 
13-0ct 6.78 0.161 5.13 0.119 
17-0ct 2.16 0.075 13.0 0.154 
18-0ct 4.01 0.096 7.08 0.122 
24-0ct 8.49 0.162 17.1 0.179 
25-0ct 9.02 0.178 4.07 0.087 
26-0ct 11.9* 0.228 2.21* 0.081 
30-0ct 24.0 0.229 2.41 0.165 
31-0ct 34.4 0.209 12.3 0.173 
01-Nov 1.22 0.062 1.00+ 0.098 
02-Nov 1.00+ 0.065 11.5 0.156 
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The value of the coefficients obtained from fitting the model were different for the 

tent and Bowen ratio data and also varied between days. Mutual dependency of the 

coefficients makes comparison of the coefficients between data sets difficult. However, 

it is apparent that stomatal sensitivity to D1 was reduced on the hot days, 30-31 October, 

for Matong (ie. large values of k) as was observed with the leaf data (Table 5.1). No 

other trends in the coefficients could be determined. Different values for the coefficients 

for the tent and Bowen ratio data may partly be attributed to the inherent differences 

between the techniques. 

Coefficients of the BBL stomatal model were different at the canopy scale compared 

to the leaf level (Tables 5.2 & 5.3 cf. Table 5.1). Standard errors of the coefficients were 

greater for the leaf data than at the canopy scale (data not shown), since the range of leaf 

conductances and variables was more limited. 

The model of canopy conductance explained much of the observed variation in data 

sets from the tent and Bowen ratio systems for both Matong and Quarrion (eg. figure 

5.4). 
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Figure 5.4 Comparison of modelled canopy conductance with the measured 

canopy conductance in the tent from the Matong crop. 
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5.4.4. Predicting Canopy Conductance from Leaf Data 

5.4.4.1. Tent Data 

With coefficients from individual days' leaf data (Table 5.1) the BBL model predicted 

canopy conductance that was in excellent agreement with the canopy conductance 

estimated from the tent measurements of transpiration (figure 5.5). The response of 

conductance to light was apparent both before 08:00 and again after 16:00. Between 

these times conductance was responding mostly to the leaf-to-air vapour concentration 

difference, D1• 

The lower conductance values, on the 30-0ct, were associated with low available soil 

moisture, which was more apparent in the Matong canopy than the Quarrion since the 

former had inherently more profligate water use (Chapter Three). Model predictions of 

canopy conductance were greater than the measured values for the Matong data on 

25-0ct, which was attributable to the poor fit of the BBL model to the leaf data on that 

day (r2 = 0.10, Table 5.1). 

5.4.4.2. Bowen Ratio Data 

Predictions of canopy conductance, using coefficients from leaf data, did not match 

the surface conductance derived from the Bowen ratio measurements of transpiration as 

well as the tent data (figure 5.6). A measure of the uncertainty in GcPM was determined 

by combining errors of± 0.01 °C of wet and dry bulb temperatures, ± 5% of available 

energy and ± 20% of gaH in the calculations. The Penman-Monteith derived surface 

conductance provided a direct estimate of canopy conductance, but as described earlier it 

was very sensistive and magnified errors from the evaporation estimates (ie. large error 

bars), which were also apparent as large fluctuations in GcPM• particularly in the late 

afternoon. Smaller error bars on the 30-0ct were due to greater coupling between the 

canopy and the atmosphere on that day. 
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Figure 5.5 Model predictions of canopy conductance (Ge;) with coefficients 

derived from leaf data (Model, -), compared with canopy conductance (Data, -a 

) determined from tent measurements of canopy transpiration from two canopies 

of wheat cultivars Matong (left panels) and Quarrion (right panels). Three days' 

data are presented: 13-0ct-90 (top), 25-0ct-90 (middle) and 30-0ct-90 (bottom). 

Also shown are the canopy leaf area indices, Le. 
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Figure 5.6 Comparison of canopy conductance ( GcPM) calculated from the 

Bowen ratio measurements of canopy transpiration using the inverted Penman­

Monteith equation (eq. 5.5; data, -o-) with predictions of canopy conductance 

(Gess>· using coefficients derived from leaf data (model,-), and the fitted model 

(fit, - - -) for two canopies of wheat cultivars Matong (left panels) and Quarrion 

(right panels). Three days data are presented: 13-0ct-90 (top), 25-0ct-90 (middle) 

and 30-0ct-90 (bottom). Error bars on GcPM were calculated from estimated 

uncertainty in the measurements (± 0.01 °C of wet and dry bulb temperatures, ± 

5% of available energy and ± 20% of gaH>· 
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The model underestimated canopy conductance on most days, but did reflect the 

general diurnal trend. Model predictions were within the estimated uncertainty of the 

canopy conductance derived from the Penman-Monteith equation. On the 30-0ct, when 

the uncertainty of GcPM was smaller, model predictions were better, but were very 

sensitive to the value of gaH· Fitting the model to the canopy data showed that the model 

was able to describe the diurnal changes of canopy conductance (dashed lines in figure 

5.6), but that in using the leaf coefficients the exact magnitude of the canopy 

conductance was not well predicted. 

5.4.5. Canopy Transpiration 

5.4.5.1. Tent Data 

Canopy transpiration was predicted from modelled canopy conductance with 

coefficients from leaf data (Table 5.1 ), g
0
H and D1 using eq. 5.8 (figure 5. 7). There was 

excellent agreement between the model and data of transpiration on all days, except for 

the Matong canopy on 25-0ct, which as previously noted could be attributed to the poor 

fit of the leaf model on that day. Both the magnitude and the diurnal pattern of 

transpiration were reproduced by the model. 

5.4.5.2. Bowen Ratio Data 

Transpiration was modelled with the Penman-Monteith equation (eq. 5.5), using 

modelled canopy conductance (Gc88) with coefficients from leaf data (Table 5.1) and 

gaH· Modelled canopy transpiration was underestimated on days when the modelled 

canopy conductance was underestimated (ie. 13-0ct for both crops and 30-0ct for 

Quarrion, figure 5.6) and similar when conductance was more accurately predicted in 

comparison with the transpiration measured by the Bowen ratio system (figure 5.8). As 

stated earlier, transpiration from smooth canopies, such as in this study, is not very 

sensitive to canopy conductance, so that good agreement between the model and 

measurements were expected. 

The error bars in figure 5.8 indicate a confidence range for the Bowen ratio 

measurements of transpiration based on an estimated uncertainty of± 5% of available 

energy,± 0.01 °C for wet and dry bulb temperatures. 
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Figure 5.7 Comparison of canopy transpiration (EJ measured with the tents (-o 

) and modelled transpiration (eq. 5.8, -) calculated using the Leuning modified 

Ball-Berry model of stomata! conductance with coefficients derived from leaf dat.a. 

Data are presented for three days: 13-0ct-90, 25-0ct-90 and 30-0ct-90 (top, 

middle and bottom panels respectively) and for the Matong and Quarrion canopies 

(left and right panels respectively). 
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Figure 5.8 Comparison of transpiration (EJ measured with the Bowen ratio 

system (--o-) and modelled canopy transpiration (eq. 5.9, -) calculated using the 

Leuning modified Ball-Berry model of stomata! conductance with coefficients 

derived from leaf data. Error bars on Ee were calculated from estimated 

uncertainty in the Bowen ratio measurements (± 0.01°C of wet and dry bulb 

temperatures, ± 5% error available energy). 
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Coefficients were also obtained from fitting the model to all the leaf data combined 

(Table 5.1). Using these combined leaf coefficients improved the fit of the model on the 

13-0ct and 25-0ct, but the estimates were worse for the 30-0ct since the extreme 

temperatures and low soil water content had a significant effect on the response of 

stomata to the environment (data not shown). 

5.4.6. Equilibrium Evaporation 

The evaporation rate was close to the equilibrium evaporation rate in the morning of 

most days, typified by the data of 25-0ct, but was greater than the equilibrium 

evaporation rate when D1 was high, ie. in the afternoons and on very hot days (35°C) 

such as the 30-0ct (figure 5.9). The leaf-to-air vapour concentration difference (D1) was 

greater than the vapour concentration deficit (Dr) until mid-afternoon when a negative 

sensible heat flux (H) reversed this ranking (figure 5.9). 

The decoupling coefficient (Q) averaged 0.7 on most days (figure 5.9), decreasing 

with increasing wind speed (data not shown). Increased coupling between the canopy 

surface and the atmosphere was observed on days of higher D1 (ie. 30-0ct), since 

stomatal conductance was reduced leading to smaller n. The close ·match between 

measured transpiration and the equilibrium evaporation was not because raH >>re ie. the 

surface was not decoupled from the atmosphere. 

163 



Chapter Five 

25-10-90 30-10-90 
12 

"7-
9 

~ 
'11 
E 6 
0 
E --E E 3 eq -l.1.J(.) --o--E 

c 

0 

--D 
40 r 

--a--D 
I 

"C" 30 
«S 

..0 
E 20 -c 

10 

0 

0.8 

a o.s 

0.4 

06 09 12 15 06 09 12 15 18 

Time of Day 

Figure 5.9 Comparison of the measured canopy transpiration rate (Ee, -) with 

the equilibrium transpiration rate (Eeq -o-) for a typical day, 25-0ct (left panels), 

and an atypical, hot day, 30-0ct (right panels). Also shown are the vapour 

concentration deficit (D,. -) and the leaf to air vapour concentration difference 

(D,. -o-). The decoupling coefficient (.Q) was lower on the hot day with higher D,. 

indicating that the canopy was more closely coupled (.Q) to the atmosphere on that 

day (bottom panels). 
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5.5. Discussion 

Canopy Conductance 

These results demonstrate that scaling stomata} conductance models is a valid 

approach to modelling canopy conductance. The BBL stomatal model was successfully 

used in a big-leaf representation of a canopy. Both the magnitude and the responsiveness 

of canopy conductance to the environment were reproduced by the model. The model 

gave realistic predictions across a range of canopy leaf area indices (3.5 to 1.3 m2.m-2) 

and in both well-watered and water-stressed conditions. 

Simpler scaling techniques, such as multiplying leaf conductance by the leaf area 

index, which do not consider the response of conductance to environmental variables, are 

not satisfactory and require empirical canopy shelter factors to get acceptable results 

(Rochette et al., 1991). Stomatal models that are only based on environmental variables 

(Jarvis, 1976), are not able to reproduce the variation of canopy conductance and in 

particular poorly describe the response of canopy conductance to low soil moisture (Kim 

& Verma, 1991b). 

Use of observed photosynthesis as a variable in stomatal models was a significant 

improvement over models that do not (Chapter Four) and this benefit extends to 

modelling of canopy conductance. The model used in this chapter implicitly accounts for 

the within-canopy profiles of light and leaf nitrogen by using the correlation between 

conductance and photosynthesis and so facilitated the scaling of conductance from leaves 

to canopies. However, it should be remembered that photosynthesis in this model is not 

a truly independent variable, in that it must be either measured (as in this study) or 

estimated by use of a model of canopy photosynthesis (subsequent chapters). It remains 

to be seen if models are able to predict canopy photosynthesis with sufficient reliability to 

be combined with this model of canopy conductance. 

The only other study that had measurements at both the leaf and canopy scales was 

similarly successful in scaling conductance using photosynthesis as a variable (Kim & 

Verma, 1991a). They concluded that soil evaporation was the main source of the 

discrepancy between modelled canopy conductance and the inferred surf ace conductance 

from the Penman-Monteith equation. The good agreement between model and data, in 
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this work, can be partly attributed to inclusion of estimates of soil evaporation, since 

gcPM is very sensitive to errors in the measured evaporation. 

Parameterisation of Canopy Conductance Models 

Use of coefficients derived from leaf data in the model gave very good predictions of 

canopy conductance in the tents (figure 5.5). However, an infinite canopy aerodynamic 

conductance was assumed. Realistically a finite value would be more appropriate, which 

would result in the model underestimating canopy conductance and transpiration, as was 

observed in the comparison of the model with the Bowen ratio data (figures 5.6 & 5.8). 

The canopy model worked best when the leaf conductance model explained a high 

proportion of the variance in the measured leaf conductance (r2) (eg. 30-0ct). Little 

variation in stomatal conductance and D1 on the 25-0ct resulted in a poor estimate of the 

leaf coefficients. On days such as these, some other sampling strategy is required that 

will cover a greater range of conductance and so improve the estimate of the model 

coefficients. However, the diurnal variation of conductance was sufficient on most days 

to give a good estimate of the coefficients. 

When the model was fitted to the data of canopy conductance (figure 5.6), the model 

accounted for much of the variation in conductance (figure 5.4). It was apparent that the 

coefficients obtained from fitting the model to the canopy data were different to those 

derived from the leaf data, although k increased on 30/31-0ct at both scales. Relating 

variation of the coefficients to other parameters (such as soil water content) will increase 

the utility of this model, although this was not possible with the present data. 

Scaling Penman-Monteith from Leaves to Canopy 

Despite the inevitable inclusion of some aerodynamic factors in the Penman-Monteith 

derived surface conductance (Finnigan & Raupach, 1987) there was good agreement in 

this study between gcPM and the modelled canopy conductance. This is probably due to 

the consideration of soil evaporation as well as the evaluation of the aerodynamic 

resistance to sensible heat or water vapour transfer, instead of the resistance to 

momentum transfer (Thom, 1972; Garratt & Hicks, 1973; Verma, 1989). 

This raises the issue of redefining the canopy aerodynamic resistance so that the 

surface conductance is a truly physiological variable, the parallel sum of conductances of 

all the individual leaves in the canopy. To a biologist this makes good sense, since the 

166 



Scaling Conductance and Transpiration 

leaf conductances are well defined, tangible and now predictable, whereas the extension 

of atmospheric transfer processes to the canopy surface has many uncertainties. 

Aerodynamic resistances are based on K-theory, which breaks down in close 

proximity to the surface (Brutsaert, 1982) so that counter gradient fluxes can occur 

(Denmead & Bradley, 1985). In addition, consideration of the atmospheric stability, 

which affects the turbulent transfer, is no simple task using the Monin-Obukhov theory. 

The nature of turbulent transfer processes in the atmosphere, requires time averaging of 

rapidly fluctuating variables, so that aerodynamic resistances do not exist for any instant, 

but are defined as time averages. Since all these factors add considerable uncertainty to 

aerodynamic resistance data, raH would be a better variable to accumulate the 

unavoidable non-linearities that occur when scaling the Penman-Monteith equation from 

leaves to canopies (Finnigan & Raupach, 1987). McNaughton (1994) pointed out that 

choice of a canopy averaging scheme depends on the use of the bulk values and outlined 

an alternative canopy averaging scheme that allows the canopy conductance to be used 

for both water and C02 fluxes. Despite these problems in use of aerodynamic resistances 

and the discrepancies between the definitions of the bulk canopy resistances, there was 

·good agreement between the model and the measurements as predicted by Raupach 

(1995). These difficulties in scaling the Penman-Monteith equation are unavoidable. 

However, use of Lagrangian models instead may overcome these problems, though the 

data requirements for them are at present still prohibitive for general use (Raupach et al., 

1992). 

Canopy Transpiration 

There was good agreement between the Penman-Monteith predictions and the 

measurements, which reconfirms the Penman-Monteith equation as the model of choice 

for this type of study. Unfortunately good agreement does not corroborate the canopy 

conductance model, because the surface was quite uncoupled from the atmosphere 

(Q = 0.7). It is reassuring that there was an equally good agreement between the model 

and measurements of transpiration (figure 5.8) on a day when the decoupling coefficient 

was at its lowest (30-0ct). 

Better agreement of the model with the tent measurements than with the Bowen ratio 

data, can be attributed to the use of an evaporation model that uses measured surface 

temperature to determine D1 (eq. 5.8). The Penman-Monteith equation (eq. 5.9) 

eliminates surface temperature but results in greater sensitivity of the model to gaH· 
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5.6. Conclusions 

The Leuning modified Ball-Berry stomata! model was applicable for use in a big-leaf 

representation of canopy conductance. Use of measured photosynthesis as a parameter 

in the model implicitly incorporated the effects of variation in light, temperature, soil 

water availability and leaf area. The response of canopy conductance to D1 and C02 

concentration were incorporated in the model explicitly. 

The model accounted for much of the variation in canopy conductance when it was 

fitted to the data. Use of leaf scale coefficients in the model gave predictions of canopy 

conductance that were in close agreement with the surface conductance inferred from the 

Penman-Monteith equation, despite the inherent sensitivity of such inferred 

conductances. Good agreement was also observed with the canopy conductance 

calculated from the tent measurements of evaporation. 

Transpiration predicted from the modelled canopy conductance was in good 

agreement with measurements. 

Surface temperature measurements need to be. used with care to infer aerodynamic 

resistance to sensible heat flux, since the assumption of a negligible soil component is not 

always valid. 
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5. 7. Appendix: Stability corrections for aerodynamic 
resistance calculations 

The scheme described here to calculate the aerodynamic resistances is based on the 

work of many researchers. The specific equations are mostly from Verma (1989), while 

their general form was best presented by Brutsaert (1982). The theoretical context of 

this work comes from reading Brutsaert (1982), Thom (1975) and Arya (1988). 

5.7.1. Theoretical context 

The surface sub-layer of the planetary boundary layer is characterised as a fully 

turbulent region where the vertical fluxes do not change appreciably from their value at 

the surface. Within the surface sub-layer, turbulence is generated by frictional drag of 

the wind on the ground and buoyancy forces from surface heating. The force exerted on 

the surface by the air is called the surface shearing stress, 't. This force is transmitted as 

a vertical flux of horizontal momentum, apparent as a vertical profile of wind speed 

(Brutsaert, 1982). 

Exact quantified solutions of fluxes or profiles of entities in turbulent motion are not 

possible, because there are too many unknown variables for the number of defining 

equations. The complexity of turbulent flow is described simply by use of the mean, 

called a first order moment, the variance (standard devaition squared), called a second 

order moment, and the covariance of one variable with another. Problems of turbulence 

are solved by closure, whereby variables (ie. the variance or covariance) are assumed 

constant at some point (Arya, 1988). 

A common approach, in micrometeorology, has been to use first-order closure, where 

the second order moments are defined by a parameter (K), which is assumed to stay 

constant within the surface sub-layer (Stull, 1988). This closure technique is called the 

gradient-transport or K-theory, since it implies that, similar to molecular diffusion, 

turbulent fluxes occur down gradients of the entity being considered, 

(5.16) 

where p is the density of moist air and Km = uJc(z-d), is the turbulent diffusivity of 

momentum. The friction velocity, u., is a scaling velocity and is defined as 
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(5.17) 

and can be obtained from the slope of a plot of ln(z) versus u in neutral conditions or 

from a direct measurement of the turbulence, as .Ju'w', using sonic anemometers. 

When atmospheric conditions are such that buoyancy forces are negligible (ie. neutral 

stability), the variation of wind velocity with height is accurately described by a 

logarithmic function, 

_( )- u. 1 (z-dJ u z -- n --
k ZoM 

(5.18) 

where k is von Karman's constant (0.41), dis the zero plane displacement and z
0
M is the 

roughness length of the surf ace for momentum. The adjustments d and z
0
M are included 

to represent the apparent surface where the momentum of wind would be absorbed if 

these profiles continued to the surface. Close to the surface, below a point about 1.5 -

3.5 times the height of the roughness elements, the viscosity of the air and the structure 

of individual roughness elements affect these profiles (Brutsaert, 1982). 

When the fluxes of sensible and latent heat cause a stratification of air density that is 

greater than the adiabatic lapse rate, then buoyancy forces affect the profiles, so that they 

are no longer logarithmic (ie. non-neutral stability). Since non-neutral conditions are far 

more usual than neutral conditions, theories have been developed to account for these 

deviations from the logarithmic profiles. The two main measures of the atmospheric 

stability are the Richardson number and the Monin-Obukhov length (L), which are 

related. 

5.7.2. Monin-Obukhov similarity theory 

The Monin-Obukhov length (LM0 ) is a measure of atmospheric stability and is defined 

as the ratio of buoyancy to mechanical forces and can be considered as the height at 

which the production of turbulence by the forces are equal, 

(5.19) 
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where p is the density of moist air (kg.m-3), g is the acceleration due to gravity (9.81 m.s-

2), H is the sensible heat flux (W.m-2), Ta is the absolute air temperature (K), and CP is 

the specific heat of air (1012 J.g-1.K-1). The ratio of the reference height to the Monin­

Obukhov length(~, zeta), 

(5.20) 

is a measure of the atmospheric stability; ~ < 0 unstable, ~ > 0 stable, ~ = 0 neutral. It is 

used to generate correction factors ( <j>, phi) for the deviations from the non-neutral 

profile, 

(5.21) 

On the basis of experimental evidence the functions of <I> for momentum are (Dyer & 

Hicks, 1970) 

(5.22) 

Stability correction functions for profiles of temperature were found to be related to 

those of momentum, <l>H = <l>M2• Integration of these gradient profiles yields profiles of 

wind velocity and temperature, 

u = J ~z = "* [1n(z-d0
)- 'I'M(~)], 

d+z,, dZ k Z0 M 

(5.23) 

T, - ~ = In - - 'I' i~) . - - H [ (z-d) ] 
k14pCP Z0 H 

(5.24) 

Strictly potential temperature should be used in place of air temperature, where potential 

temperature is air temperature adjusted for isothermal pressure effects of height, given by 

the dry adiabatic lapse rate (0.01 K.m-1), the theoretical decrease in temperature with air 
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expansion at decreasing pressure with altitude. The stability integrals ('¥, psi) are given 

by the functions (Paulson, 1970) 

(5.25) 

) (
l+x) (l+x

2J 7t 'PM(~ = 2ln -
2
- +In -

2
- -2arctan(x)+2 , (5.26) 

(5.27) 

where xis defined as 

(5.28) 

5.7.3. Aerodynamic resistances 

Linking the atmospheric turbulent fluxes with the physiology of a vegetated surface is 

best achieved by expressing the flux equations in a resistance form. Analogous with 

Ohm's law, a flux is equal to the gradient divided by the resistance. Within the surface 

sub-layer (but above the surface) there is an assumed similarity of the turbulent transfer 

processes for momentum, heat and water vapour so that the diffusivities (and 

resistances) are assumed equal for all pressures. These resistances can be extended to 

apply to fluxes between the surface (where z = z
0 

+ d) and the reference height (z = r) so 

that the resistance to momentum transfer (r aM) is defined as 

u 
raM =--2' 

Cau.. 
(5.29) 

where Ca is the molar concentration of air (p/Ma) to convert the resistance to molar 

units. This expression can be combined with the momentum profile equation (eq. 5.23), 

to eliminate u, so that 
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(5.30) 

Similarly the aerodynamic resistance to heat transfer (ran) between the surface and the 

reference height is 

r =C T,-T, 
aH p H (5.31) 

However, there is considerable difficulty in obtaining appropriate values for the surface 

temperature, Ts. By using the flux profile expression for turbulent heat transfer (eq. 

5.24) to eliminate the surface temperature an alternative expression is obtained, 

(5.32) 

Combining this expression with the momentum flux-profile equation (eq. 5.23) to 

eliminate z-d, gives 

(5.33) 

It is apparent that compared with the definition of r aM there is an additional resistance to 

heat transfer (rb) so that 

TaH = T,,M + lj, ' (5.34) 

This 'excess' or 'quasi-laminar layer' resistance is due to enhanced transfer of momentum 

at the surface by additional bluff body forces, which have no analogy in the transfer of 

heat or water vapour (Thom, 1972). 

Experimental evidence suggests that z0~z0H = 7 (Garratt & Hicks, 1973), so that rb is 

a similar magnitude to raM up to a reference height 1 m above the apparent surface. 

Ignoring it leads to significant underestimates of raH (Verma, 1989). The similarity of 

transport processes for heat, water vapour and C02 allows identical resistances to be 

used (Brutsaert, 1982). 
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Summary 

Multi-layer models of canopy photosynthesis can provide predictions that closely 

match observations. Their complexity can be prohibitive for use in models of larger 

processes such as crop growth or global carbon cycling. Simplified models that consider 

only two classes of leaves, sunlit and shaded leaves, have previously been shown to be 

adequate, but they do not readily incorporate within-canopy profiles of leaf properties. 

Within-canopy profiles of leaf nitrogen have been cited as evidence for optimisation 

of canopy resources to maximise canopy photosynthesis. Recently, it has been suggested 

that an optimal distribution of leaf nitrogen allows simple big leaf models of 

photosynthesis to be used. These simple big leaf models require an empirical curvature 

factor to overcome the non-linear response of leaf photosynthesis to light, when applied 

to the canopy, which can create difficulties when the models are used for predictions 

with new combinations of variables. 

In this chapter sunfleck penetration and random leaf orientation in canopies, factors 

which are often ignored, are shown to significantly affect the optimal distribution of leaf 
. -

nitrogen. When these factors are considered ·the optimal distribution has a greater 

accumulation of leaf nitrogen in the upper leaves of the canopy, compared to the optimal 

distribution if these factors are ignored. 

A new model of canopy photosynthesis is presented that treats the sunlit and shaded 

leaves as separate components. While similar to previously developed models, it is 

different in that it utilises the within-canopy profiles of leaf properties to develop a . 

relatively simple analytical solution to the integration of the sunlit and shaded 

components of canopy photosynthesis. Use of the sun/shade model gives more accurate 

predictions of canopy photosynthesis than a simple big leaf model. 

The new sunlit/shade model is shown to be as good as a multi-layer model of canopy 

photosynthesis, without the use of empirical curvature factors. When the simple big leaf 

model is fitted to predictions of canopy photosynthesis from the multi-layer model, it is 

shown that this curvature factor is not constant, but varies strongly with canopy leaf area 

index and to a lesser extent total canopy nitrogen. Canopy photosynthesis, predicted by 

the big leaf model, was overestimated by 25% at a canopy leaf area index of four, when 

the model was tuned for a leaf area of two, while the sun/shade model had no such error. 
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6.1. Introduction 

Scaling gas exchange from leaves to paddocks was examined as part of a larger 

project to assess water-use efficiency in the field (Condon & Richards, 1993). 

Comparison of the water-use efficiency of two crops with genetically different stomatal 

conductances, was complicated by differences in leaf area index and different rates of soil 

evaporation. These differences also confounded an evaluation of the scaling of water­

use efficiency from measurements alone (Chapter Three). Models of canopy gas 

exchange provide a theoretical framework for more thorough analysis and interpretation 

of the scaling of physiological processes. Use of a canopy model for analysis of such 

experiments requires that it be process based, physically realistic, yet be sufficiently 

simple to be effectively parameterised. Such models also fit the requirements of 

assessing the effects of climate change on vegetation. 

Models of canopy photosynthesis must consider the heterogeneous light environment 

in canopies and the non-linear response of photosynthesis to light as demonstrated by 

many authors (Sinclair et al., 1976; Norman, 1980; Smolander, 1984). Recognition that 

light attenuation through canopies can be described by Beer's law (Monsi & Saeki, 1953) 

led to several models of light penetration and absorption through canopies (Warren 

Wilson, 1960; de Wit, 1965; Cowan, 1968a; Ross & Nilson, 1967; Ross, 1975; 1981; 

Goudriaan, 1977). It is now generally accepted that penetration of light through 

canopies must separately consider beam and diffuse light, due to their different 

attenuation in canopies, as well as visible and near infra-red wavelengths due to 

differential absorptance by leaves (Goudriaan, 1977). 

These models of light penetration became the basis for several comprehensive models 

of canopy photosynthesis (de Wit, 1965; Duncan et al., 1967; Lemon et al., 1971; 

Norman, 1979), which are currently used in crop models (Whisler et al., 1986). They 
, 

divide the canopy into multiple layers with many different leaf-angle classes, for which 

the absorbed light is used to determine leaf photosynthesis. Numerical integration of 

photosynthesis from each leaf-class gives canopy photosynthesis. The flexibility of multi­

layer models allows within-canopy profiles of both environmental and physiological 

variables to be incorporated. While these models have been used for many applications, 

their complexity and the number of calculations involved with their multi-leaf-class 

description of canopies is a drawback for their inclusion in models of global carbon 

cycling (Sellers et al., 1992). 
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Multi-layer models have been successfully simplified by considering only two classes 

of leaves; sunlit and shaded (Sinclair et al., 1976; Norman, 1980). This simplification is 

effective because light in the canopy is essentially binomially distributed in either 

sunflecks or shade, so that the non-linear response of photosynthesis to absorbed light 

can be averaged in each of these classes with little error. Further simplification to 

models with only a single leaf layer introduces large errors and are inadequate for most 

purposes (Sinclair et al., 1976; Norman, 1980; Boote & Loomis, 1991). 

Another approach to the simplification of canopy photosynthesis models is to derive 

analytical solutions (Acock et al., 1978; Johnson & Thomley, 1984) and so avoid 

numerical integration. However, analytical solutions can only be derived from specific 

equations (rectangular hyperbole) for the response of photosynthesis to light, which do 

not fit measurements as well as the preferred equations (non-rectangular hyperbole). 

Predictions of canopy photosynthesis from analytical models are not as close to 

measured rates as those from the sun/shade type models (Boote & Loomis, 1991 ). 

Within-canopy profiles of leaf nitrogen (or photosynthetic capacity) have been shown 

to be significantly non-uniform in canopies of a diverse range of species (Spiertz & Ellen, 

1978, wheat; DeJong & Doyle, 1985, peach; Hirose & Werger, 1987a, Solidago 

altissima; Pons et al., 1989, Lysimachia vulgaris; Schieving et al., 1992, Carex 

acutiformis; Sadras et al., 1993, sunflower; Anten et al., 1995, rice, soybean, sorghum & 

amaranthus). Profiles of leaf properties can be incorporated into multi-layer models of 

canopy photosynthesis and have a significant effect (Meister et al., 1987). They are also 

accommodated by canopy models with analytical solutions (Acock et al., 1978), but are 

not easily incorporated into the sun/shade models of canopy photosynthesis, except by 

empirical adjustments (Boote & Loomis, 1991). 

Profiles of leaf properties have led to the hypothesis that leaves adapt or acclimate to 

their light environment such that a plants nitrogen resources may be distributed to 

maximise daily canopy photosynthesis (Field, 1983; Hirose & Werger, 1987a). An 

optimal distribution of leaf nitrogen is when any re-allocation of nitrogen would decrease 

daily photosynthesis. It has been further suggested that the optimal distribution of 

nitrogen occurs when the nitrogen is distributed in proportion to the profile of absorbed 

light in the canopy. The appropriate profile of absorbed light is the time average over the 

previous several days to a week, the time over which leaves are able to adapt. Several 

canopy models have been used to demonstrate that canopy photosynthesis is maximised 
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when leaf nitrogen is distributed in proportion to the profile of absorbed light (Hirose & 

Werger, 1987a; Wu, 1993; Badeck, 1995; Sands, 1995). However, contrary to the 

earlier demonstration that separate treatment of sunlit and shaded leaves is essential in 

canopy models (Sinclair et al., 1976; Norman, 1980), many of the models used to 

examine optimal distributions of nitrogen have ignored the penetration of sunflecks and 

made the assumption of 100% diffuse light. While all diffuse light may be a reasonable 

assumption for some of the canopies examined where cloudy conditions predominate, it 

seems unlikely to be the case in canopies exposed to sunny conditions and is not a 

reasonable assumption for models that attempt to generalise the original hypothesis to all 

canopies. 

The concept of an optimal distribution of leaf nitrogen has also been used as the basis 

for a new generation of big leaf models of canopy photosynthesis (Sellers et al., 1992; 

Amthor, 1994). It was demonstrated by Farquhar (1989) that the equation describing 

whole leaf photosynthesis has the same form as for individual chloroplasts across a leaf, 

provided that the distribution of chloroplast photosynthetic capacity is in proportion to 

the profile of absorbed light and that the shape of the light response is identical in all 

layers, which he further stated was analogous with leaves in a canopy. If the distribution 

of photosynthetic capacity between leaves is in proportion to the profile of absorbed light 

then the equation describing leaf photosynthesis will also represent canopy 

photosynthesis (Sellers et al., 1992). 

The models of both Sellers et al. (1992) and Amthor (1994) also seem to contradict 

the accepted practice in modelling canopy photosynthesis that, at a minimum, separation 

into sunlit and shade leaves is essential to give accurate predictions. The analogy of 

leaves in a canopy with chloroplasts in a leaf breaks down because of differences in the 

nature of light distribution in each system. In a leaf, light is scattered in all directions by 

the first layer of cells, although its extinction through the leaf is still described by Beer's 

law. In a canopy while the time-averaged profile of absorbed irradiance is exponential 

(ie, described by Beer's law), the instantaneous profile of absorbed irradiance is not. 

Leaves in sunflecks deep in the canopy have much higher absorbed irradiance than the 

Beer's law would predict. Additionally, irradiance in canopies is dominated by direct 

beam light (often 80 - 90 % ), so that leaf angle is critical in determining the amount of 

absorbed irradiance (Lambert's law). Leaves at the top of the canopy that are parallel to 

the direction of the beam only absorb diffuse irradiance. Instantaneous profiles of 
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absorbed irradiance in canopies do not follow Beer's law because of both sunfleck 

penetration and leaf angles. 

The big-leaf models of Sellers et al. and Amthor overcome these limitations by using 

an empirical coefficient to increase the curvature of the light response of canopy 

photosynthesis. This reduces the overestimation of photosynthesis that would have 

occurred from using the averaged profile of absorbed light with no curvature factor. 

What implications does this have? Perhaps, very little. Big leaf models have been shown 

to accurately describe canopy photosynthesis (Amthor et al., 1994). The problem with 

using this type of correction is that the empirical curvature coefficient may not be 

constant with different conditions, thus reducing the accuracy of predictions for new 

conditions such as canopies with different leaf area indices. 

The big-leaf model based on the relationship between the profiles of absorbed light 

and leaf nitrogen is a powerful means to reduce the complexity of models of canopy 

photosynthesis. This new approach needs to be reconciled with evidence from earlier 

work that leaves of sunlit and shaded leaves must be treated separately (Sinclair et al., 

1976; Norman, 1980). It is desirable to combine these two approaches, so that the 

simplifications possible from the optimal distribution of photosynthetic resources can be 

used with the accuracy of canopy models which treat sunlit and shade leaves separately. 

In this chapter I present such a model, that analytically integrates the photosynthetic 

capacity and absorbed light of the sunlit and shaded leaves separately. This new sunlit 

and shaded big leaf model is compared with a multi-layer model and with a simple big 

leaf model with empirical curvature coefficients. The effect of sunfleck penetration 

through canopies and leaf-angles is considered with respect to the optimal distribution of 

canopy nitrogen and compared with the assumptions of 100 % diffuse light. I examine 

the hypothesis that the new sun/shade model gives predictions of canopy photosynthesis 

as good as a multi-layer model, and is significantly better than the big-leaf models of 

Sellers and Amthor. 
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6.2. Model 

6.2.1. Leaf Photosynthesis 

The model of Farquhar et al. ( 1980) was used to describe leaf photosynthesis. This 

model describes photosynthesis as being limited by either the kinetics of the reactions 

catalysed by the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco ), or 

by the regeneration of the substrate ribulose-1,5-bisphosphate (RuBP) which is driven by 

the electron transport reactions of the thylakoids. 

The Rubisco limited rate of photosynthesis (Av) is given by the equation: 

A -V. P; -r. 
v - IP; +K' 

(6.1) 

where Pi is the intercellular C02 partial pressure, r. is the C02 compensation point in the 

absence of mitochondrial respiration, V1 is the catalytic capacity of Rubisco per unit leaf 

area, K' is the effective Michaelis-Menten constant of carboxylation: 

K' = K)l + O/KJ (6.2) 

Kc and K
0 

are Rubisco Michaelis-Menten constants for C02 and oxygen, respectively, 

and 0 is the 0 2 partial pressure. 

Farquhar et al. ( 1980) described leaf photosynthesis in terms of the C02 and 0 2 

partial pressures in the chloroplasts. The partial pressures in the chloroplasts and the 

intercellular air spaces were assumed equal, since, in the absence of measurements, 

internal resistances to diffusion were assumed to be zero. Recently, carbon isotope 

discrimination techniques have allowed estimates of the internal resistances (Evans et al., 

1986; von Caemmerer & Evans, 1991; Lloyd et al., 1992; Evans et al., 1994; Loreto et 

al., 1992). The techniques are subject to several assumptions and the estimates are 

variable, although they do show a general correlation of increasing internal conductance 

with rate of photosynthesis, which seems to be related to surface area of chloroplasts 

exposed to intercellular air spaces (Evans et al., 1994 ). This suggests that for a 

particular species a simple internal conductance porportional to photosynthetic capacity 

may be sufficient to account for this phenomenon. A finite internal resistance lowers the 
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partial pressures in the chloroplasts and thus affects the value of the Rubisco parameters 

Kc, K0 and r * that are determined from gas exchange measurements. It is important to 

use the parameter values appropriate to the assumptions of internal conductance. 

I examined the effect of including an internal conductance (g; = 0.5 mol.m-2.s-I at V1 = 
100 µmol.m-2.s-1) and found that it had very little effect(< 1 %) on the diurnal course of 

canopy photosynthesis and inclusion of this phenomenon in a simple model of canopy 

photosynthesis is not warranted. I have assumed an infinite internal wall conductance to 

C02 diffusion and the appropriate values of the parameters are in Table 6.1. 

RuBP regeneration limited rate of photosynthesis, A 1, is given by the equation: 

(6.3) 

where J is the electron transport rate, as indicated by production of NADPH, which can 

be empirically related to PAR (0.4-0.7µm) irradiance usefully absorbed by Photosystem 

II (PSII) by a non-rectangular hyperbola (Farquhar & Wong, 1984): 

(6.4) 

where 81 is a curvature factor which determines how quickly the transition is made from 

the region of maximum quantum yield to the light saturated rate. The maximum electron 

transport rate (J m) is a property of the amount and nature of the thylak.oid membranes 

that varies with growth conditions; low nitrogen nutrition or low light in the growth 

environment results in low values of Jm (Evans & Farquhar, 1991). 11e is the effective 

absorbed PAR by PSII per unit leaf area and is related to absorbed irradiance per unit 

leaf area by the equation 

(6.5) 

wherefis a correction factor (-0.15) for the actual quantum yield in sunlight compared 

to the maximum which occurs with light of 0.6 µm. The factor 2 relates to the 

requirement of absorption of photons by both PSI and PSII to drive an electron from 

H20 to NADP+. The reasons for the observed quantum yield being lower than the 

theoretical maximum (8 quanta absorbed per 4 electrons transferred) are unclear. Evans 
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(1987) suggested that it may be due the spectral imbalance of sunlight with respect to the 

absorption characteristics of Photosystems I and II (PSI & PSII). 

The actual rate of photosynthesis is determined as the minimum of these rates 

(providing Pi> r.). 

(6.6) 

R1 is the non-photorespiratory respiration that continues in the light. Recent 

modifications to the model have included an additional limitation to photosynthesis 

associated with the capacity for export or utilization of the products of photosynthesis 

(Collatz et al., 1991). I have ignored this effect for the sake of simplicity as it is unlikely 

to be significant under most conditions. 

It has been suggested that the transition from electron transport to Rubisco limited 

photosynthesis is not abrupt, but more gradual, with a range of conditions under which 

co-limitation occurs (Kirschbaum & Farquhar, 1984; Collatz et al., 1991). However, I 

believe this makes little difference to leaf photosynthesis in the field and the aggregate 

canopy photosynthesis, since only a small fraction of leaves are near the light saturation 

point at any moment. Consequently I have used the model in its simplest form ignoring 

this modification. 

6.2.1.1. Respiration 

Leaf respiration that continues in the light (R1) is assumed to be a fixed proportion of 

Rubisco capacity. This is equivalent to assuming a fixed C02 compensation point, r, 
which is more tangible than a ratio. In this case I assumed a value of 44 µbar at 25°C, 

which is a reaonable value for wheat (Watanabe et al., 1994) and using the equation; 

R1 _ r-r. 
Yi r+ K'' 

(6.7) 

gives a value of R1 = 0.0089V1• This ratio is lower than the value used by Collatz et al., 

(1991, 0.015) and Farquhar et al., (1980, 0.011), though in fact probably makes very 

little difference. 
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6.2.1.2. Effect of Temperature 

All metabolic reactions of photosynthesis are affected by temperature. A variety of 

functions have been used to describe rate responses; the most popular being the Q 10 and 

Arrhenius functions. 

Biologists have often used the Q10 function (eq. 6.8) to describe temperature 

response phenomena; mostly for its simplicity. The Q10 value is simply the relative 

increase in a rate over a 10°C temperature range. It is specified at a particular 

temperature (TJ, as the Q10 itself generally changes with temperature. The Q10 allows 

easy comparison between studies, but its variation with temperature tends to limit its use 

over a wide temperature range. 

k - k Q (T-'15)/IO 
T - '15 10 (6.8) 

In the Arrhenius function (eq. 6.9), preferred by biochemists to describe the effect of 

temperature on the rate of enzyme catalysed reactions, the activation energy (Ea) 

represents the kinetic energy of substrates required for the reaction to proceed. It is less 

affected by temperature, and it fits rates well over a wide range of temperatures. 

k =k ex ( Ea(T-25) ) 
T '15 p R·298.15·(T+273.15) 

(6.9) 

where R is the universal gas constant (8.314 J.mol-1.K-l ). 

However, many reactions of photosynthesis are reversible and a different activation 

energy is required for the reverse reaction. For equilibrium or net reactions, the apparent 

activation energy is not constant, but varies with the ratio of forward to reverse 

reactions. Also the activity of membrane bound enzymes varies as the fluidity of 

membrane lipids changes with temperature. For both these reasons and other factors, 

many reactions do not appear to have a constant activation energy. It usually increases 

at lower temperatures (eg.; Badger & Collatz, 1977). 

Despite these limitations the Arrhenius function is a better descriptor of temperature 

response than the Q10 function and it still allows simple comparison of rate responses 

between studies. Use of empirical polynomial functions would avoid the falsely implied 

mechanistic basis of the Arrhenius function, but the coefficients do not allow easy 

comparison between studies. 
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In this work I have used the Arrhenius function; the activation energies of the 

relevant parameters are presented in Table 6.1 and their responses to temperature are 

plotted in figure 6.1. 

Table 6.1 Photosynthesis parameters at 25°C and their 

activation energies, E (kJ.mo1-1). The Rubisco 

parameters Kc, K0 and r. are defined assuming an infinite 

internal wall conductance to C02 diffusion. 

Parameter Value E 

K,, (µbar) 404a 59.4b 

K
0 

(mbar) 248a 36.0b 

vi (µmol.m-2.s-1) 100 64.8b 

Jm (µmol.m-2.s-1) 2.1 vie 37.0C 

R1 (µmol.m-2.s-1) 0.0089V1 66.4C 

r. (µbar) 36.9a 27.Qd 

a von Caemmerer et al. (1994); b Badger and Collatz 

(1977); c Farquhar et al. (1980); d Jordan and Ogren 

(1984); e Watanabe et al. (1994) 

This model of leaf photosynthesis defines r. as a function of the Michaelis-Menten 

constants and the ratio of the maximal rates of oxygenation to carboxylation by Rubisco 

(Farquhar et al., 1980, their eq. 38). Thus assuming a constant ratio of oxygenation to 

carboxylation, the temperature response of r. is mathematically defined by the response 

of each of the components. However experimentally it is more accurate to measure r. 
and its temperature response directly in vivo than its components. Thus I have used the 

temperature response of Jordan and Ogren (1984), which was very similar to that of 

Brooks and Farquhar (1985) but over a wider temperature range, and the more recent 

absolute values of r. from von Caemmerer et al. (1994). 

r. = 36. 9 + l.88(T-25) + 0.036(T-25)2 (6.10) 
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Figure 6.1 Effect of temperature on leaf photosynthesis parameters: Vi 
(µmol.m-2.s-1), Jm (µmo1.m-2.s-1), r. (µbar C02) and K' (eq. 6.2, µbar C02) 

modelled using activation energies in Table 6.1. 

Maximum electron transport capacity, J m' increases with temperature until a 

maximum is reached and then declines rapidly. Farquhar et al. (1980) modelled this 

phenomenon with the function 

(6.11) 

where Ea is the activation energy of Jm and S and H are parameters to define the 

deactivation at high temperatures. This expression was based on data from isolated 

chloroplasts that had been growing at 25 °C. Harley et al. ( 1992) obtained parameter 

values for the response of photosynthesis to temperature in cotton. The functions they 

obtained were not statistically different to those originally used by Farquhar et al. ( 1980), 

so the latter functions and parameters values were retained. However, many plants, 

including wheat, acclimate to the growth temperature regime so that the temperature 

dependence of membrane bound processes such as electron transport, adapt to the 
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growth temperature (Bjorkman et al., 1980; Sayed et al., 1989). Expressions to describe 

temperature acclimation may need to include this phenomenon, although they have been 

ignored here. 

6.2.1.3. Ratio of Rubisco to Electron Transport 

It has been suggested that leaves tend to optimize their photosynthetic enzymes such 

that the transition from Rubisco to RuBP regeneration limited photosynthesis occurs at 

conditions often experienced by the leaves, so that neither Rubisco nor electron transport 

capacity is greatly in excess of that required for the growth conditions (von Caemmerer 

& Farquhar, 1981; Evans, 1986; Chen et al., 1993). While there is some evidence to 

suggest that plants grown in controlled environments do distribute their resources in an 

optimal manner (von Caemmerer & Farquhar, 1981; Evans, 1986), it is more difficult to 

demonstrate in field grown plants; especially considering the variability of light and 

temperature and the uncertainty of 'normal' conditions. The partitioning between electron 

transport and Rubisco, must therefore be sub-optimal most of the time, since the optimal 

ratio will change during the day and between days. 

Despite the preceding limitations to an optimal distribution, the ratio of J m: V1 varies 

little across a wide range of species (Wullschleger, 1993). In wheat the ratio is highly 

conserved across a wide range of conditions (Evans, 1983; Makino et al., 1992; 

Watanabe et al., 1994), although the ratio does vary with temperature in proportion to 

the ratio of the temperature sensitivities of the components. I have assumed a fixed ratio 

of Jm:V1 = 2.1 at 25 °C. 

This ratio of J m: V1 affects the conditions under which photosynthesis is RuBP or 

Rubisco limited. At or below ambient C02 concentrations ( < 350 ppm) and high light 

(> -1200 µmol quanta.m-2.s-1) leaves will be Rubisco limited. While at low light ( < -500 

µmol quanta.m-2.s-1) and ambient or greater [C02] (> 350 ppm) leaves will be RuBP 

regeneration limited. At some intermediate irradiance (between 500-1200 µmol 

quanta.m-2.s-l) the limitation will change from Rubisco to RuBP regeneration limited. 

This irradiance is known as the light saturation point of leaf photosynthesis (l1sat), since 

there is no further increase in photosynthesis with increasing light. It can be calculated 

by combining eqs. 6.1-6.5 and rearranging to yield the expression: 
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2 4(p; + 21.)( 401(pi + 21.)- J mf\'i (pi+ K')) 

I/sat =Yi (1- J) (pi+ K')( 4(pi + 21.)- lm/"i (pi+ K')) 
(6.12) 

Several of the parameters in the calculation of the light saturation point of 

photosynthesis are affected by temperature. Providing the ratio of J m/V1 remains 

constant (at 25 °C), the light saturation point is a linear function of Rubisco capacity and 

the slope increases with increasing Pi and with temperature (figure 6.2). This relationship 

of decreasing light saturation point with decreasing Rubisco capacity becomes significant 

when photosynthesis of leaves is scaled to canopy photosynthesis, as explained in a later 

section. 
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Figure 6.2 Light saturation point of leaf photosynthesis (1158r) (eq. 6.12), under 

conditions experienced in a canopy, where P; is assumed constant while 

photosynthetic Rubisco capacity and irradiance decrease with depth in the canopy. 

The ratio of electron transport to Rubisco (Jrrfl/i) is assumed constant. Three 

constant values of P;are shown (left panel) 180 (solid line), 230 (dashed line) and 

280 µbar (dotted line) and three temperatures (right panel) 10 (solid line), 20 

(dashed line) and 30 °C (dotted line). 
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6.2.2. Stomata! Conductance and lntercellular C02 

The Farquhar et al., (1980) model of leaf photosynthesis has intercellular C02 

concentration (cJ as a variable, which is affected by both the supply of C02 by diffusion 

through the leaf boundary layer and stomata and by the rate of uptake by C02 fixation. 

The photosynthesis model must be coupled with a model of stomata! conductance to 

predict photosynthesis. I have used the Ball-Berry model (Ball et al., 1987) as modified 

by Leuning ( 1995), that was evaluated in Chapter Four. Intercellular C02 concentration 

(c;) was calculated using the equations for gas exchange presented by von Caemmerer & 

Farquhar ( 1981 ). The expressions for photosynthesis, conductance and diffusion of C02 

were solved iteratively. 

6.2.3. Light penetration in canopies 

6.2.3.1. Canopy Structure 

Canopy structure is the spatial arrangement of canopy elements (leaves and stems). 

It is determined by the canopy leaf area, orientation, and vertical and horizontal 

(clumping) distributions. I have assumed a horizontally homogeneous leaf distribution. 

Position in the canopy is defined by the downward cumulative leaf area, thus avoiding 

the need to specify the vertical leaf area distribution. Canopy leaf area is known from 

direct measurements. Leaf orientation is described following the work of Ross (1975; 

1981 ), as discussed below. 

One only has to look at a real plant canopy to appreciate that a mathematical 

description of its structure can be very complex. Consequently many assumptions are 

made in this modelling; further details are in the comprehensive treatment of Ross 

(1981). In this description I give the general form of the most pertinent equations and 

the specific forms appropriate to the explicit assumptions that I have made. 

The spatial arrangement of leaves is described by the distribution function of leaf area 

orientation g(a.1, <j>1) (Ross, 1975). This function defines the probability of leaf area being 

oriented with an inclination (a.1) to the horizontal and an azimuth orientation (<1>1): 

(6.13) 
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The sina.1 arises from the ratio of the circumference of circles (27tr) at different positions 

on a sphere, where their position is defined by a.1 and sina.1 is the radius of such circles. 

If leaves display no azimuth preference, as is the case with a wheat canopy, then <j>1 is 

eliminated so that g( a.1, <j>1) = g( a.1) and eq. 6.13 may be simplified: 

(6.14) 

Leaf inclination distributions range from the simplest, which are horizontal or vertical 

leaf angle distributions, to any number of complex possibilities in between. In the special 

case of uniform or spherical leaf angle distribution, all leaf orientations are equally 

probable and g( a.1, <j>1) = 1. By simple geometry and integration around the horizon of 

27t, the distribution of leaf area as a function of angle is given by g( a.1) = sina.1• 

Leaf angle is used to calculate absorbed beam irradiance per unit leaf area, by 

Lambert's cosine law, as lbcosd.1• Absorbed irradiance is in tum used to calculate 

photosynthesis. In a multi-layer model, canopy photosynthesis is obtained by numerical 

integration of the leaf photosynthesis equations from all leaves. Thus, to apply Lambert's 

law, the canopy is divided into a numqer of discrete leaf-angle classes (depending on the 

detail required). The fraction of leaf area in each class (ft) is obtained from the integral 

of the leaf area distribution function, g( a.1), which in the case of a uniform leaf-angle 

distribution is 

(6.15) 

A mean cosine of leaf-angle ( cosa.1 ) for each class is determined, rather than the cosine 

of the mean leaf-angle (cosa.1) as has been used elsewhere (Norman, 1980). For each 

leaf-angle class the mean cosine of leaf-angle is determined as; 

(6.16) 

Calculated mean leaf inclinations for divisions of 1 and 5 leaf-angle classes are given 

in Table 6.2. For example, in a five leaf-angle classification of a uniform leaf-angle 

distribution, each class covers an interval of 18°. The first class from 0-18° has a mean 

cosine of 0.976 and contains 4.9% of the leaf area, the second interval has a mean cosine 
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of 0.880 and contains 14.2% of the leaf area, and so on. Leaf angles nearest horizontal 

have most leaves, and conversely those nearest vertical have the least. 

Table 6.2 Mean cosine of leaf-angle (cos a.1 ) and 

distribution of leaf area (fJ for a canopy of uniform leaf-angle 

distribution divided into 1 or 5 leaf-angle classes of equal 

leaf-angle divisions. 

No. of leaf­
angle classes 

1 

5 

Interval range 

0 

0 
18 
36 
54 
72 

90 

18 
36 
54 
72 
90 

6.2.3.2. Light Distribution 

0.500 

0.976 
0.880 
0.698 
0.448 
0.155 

!1 

1.000 

0.049 
0.142 
0.221 
0.279 
0.309 

Irradiance at different levels in a canopy is determined principally by light penetration 

into the canopy. Attenuation of light by the canopy is affected by position of the sun, 

proportion of diffuse light, leaf area, orientation and their optical properties of 

reflectance and transmission. Solar elevation is calculated from the geometry of 

planetary rotation and fraction of diffuse light is modelled by a simple atmosphere 

attenuation model (Campbell, 1977). Light penetration was first modelled by Beer's law 

(which was first described by Bouguer, but is commonly known as Beer's law or the 

Beer-Lambert law (Iqbal, 1983)) by Monsi and Saeki (1953) and elaborated by many 

others, best summarised in the work of Goudriaan (1977). Light profiles are converted 

to light absorbed per unit leaf area at the appropriate leaf angles according to Lambert's 

cosine law, to drive photosynthesis, as detailed below. 
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Solar Geometry 

The position of the sun in the sky is described by. two parameters; elevation in the 

vertical and azimuth in the horizontal. Solar elevation (~) is a function of day of the year 

(td), latitude (A) and time of day (t) and is geometrically defined by the equation (Jones, 

1992): 

sin ~ = sin A. sin 8 + cos A. cos 8 cos h (6.17) 

where his the hour angle of the sun and is given by 7t(t - t
0
)/12, tis the time in hours and 

t
0 

is the time of solar noon at a particular location. Solar declination (8, radians) is 

determined by tilt and rotation of earth and is a function of the day of the year, begi_nning 

with 1 on 1 January. 

8=-23.4~cos[21t(td+10)/365]. 
180 

(6.18) 

Azimuth of the sun (<J>s) is defined as the angle from south (for the southern 

hemisphere) where it is zero with east positive and west negative and is given by the 

expression (Iqbal, 1983): 

sin <!> s = (sin ~ sin A. - sin 8) /cos~ cos A.. (6.19) 

Solar noon is calculated from the longitude and the ephemeris of the sun given by the 

equation of time (E1), which accounts for the variation in period of rotation of earth. 

According to Iqbal (1983) this is given by 

E1 =229.18(0.000075 +0.001868cosf'd -0.032077sin ['d 

-0.014615cos2f'd -0.04089sin 2rJ 
(6.20) 

where the factor 229 .18 converts radians to minutes (time) and [' d is the day angle 

(radians) and is calculated as 

(6.21) 

The Equation of time combined with the longitude correction determines the time of 

solar noon as: 
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(6.22) 

where Ls and Le are the standard and local longitudes. The longitude correction is based 

on 4 minutes for every degree difference between the local and standard meridians. It is 

positive if the local meridian is east of the standard and negative west of the standard 

meridian. All international standard meridians are multiples of 15° east or west of 

Greenwich, England. For example, at Wagga Wagga (Le= 147° 20.5' E and Ls= 150° 

E) the longitude correction is -10.63 minutes. 

Fraction of diffuse light 

Light is attenuated by scattering from gas molecules, water vapour and dust in the 

atmosphere, so that both the quantity and quality of light is changed at the earth's 

surface. The extent of the attenuation depends on the concentration of absorbers and the 

path length through the atmosphere. This process is described by a simple model for the 

attenuation of short-wave radiation (Campbell, 1977) that has been modified to describe 

attenuation of PAR: 

(6.23) 

where lb is beam PAR. le is the extra-terrestrial quantum flux (2413 µmol quanta.m·2.s-1, 

calculated from the energy distribution of the solar 'constant' - 1367 W.m-2 with a 3.3 % 

seasonal variation as the mean distance between the sun and earth changes (Iqbal, 

1983)). a is an empirical atmospheric transmittance coefficient that varies from 0.9 for 

very clear sky to 0.6 for hazy conditions and m is the optical air mass, which is defined as 

the ratio of the mass of atmosphere traversed per unit cross-sectional area of the solar 

beam to that traversed for a site at sea level if the sun was directly overhead. The value 

of m therefore decreases with altitude and increasing solar elevation and by ignoring the 

curvature of the earth's atmosphere, can be described by the expression 

m = (~J/sin ~. (6.24) 

where P is atmospheric pressure and P 
0 

is atmospheric pressure at sea level. 

If scattering were solely responsible for attenuation of light in the atmosphere, then 

50% of attenuated radiation would be forward scattered as diffuse light to the surface 
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and the remainder scattered back out to space. However, light absorption occurs at 

particular wavelengths characteristic of each absorber, so that less than 50% reaches the 

earth surf ace. Observations have ranged from 40 - 45 % of attenuated light that reaches 

the surface as diffuse light (Weiss & Norman, 1985). A value of 42.6 % was found to 

give a best fit to the available data. This can be expressed by the equation; 

(6.25) 

where Id is diffuse PAR light intensity at the earth's surface andfa is the proportion of 

attenuated PAR scattered forward to the earth's surface. 

An expression for the diffuse fraction (f
0

) of total light (beam plus diffuse) can be 

obtained by combining eqs. 6.23 & 6.25: 

(6.26) 

Although this model was developed for the attenuation of short wave radiation which has 

slightly different scattering and absorption compared with PAR, I have assumed that the 

process is similar. These differences result in slightly different atmospheric transmission 

values based on PAR values compared to those based on short wave radiation. 

Penetration in a canopy 

A simple model of beam penetration is described below. It is extended to include 

penetration of diffuse light and scattering of beam and diffuse light by leaves. The model 

is then used to determine the fraction of sunlit leaves and the irradiance of sunlit and 

shaded fractions. Finally the absorption of light by leaves as distinct from their irradiance 

is described. 

The distribution function of leaf orientation (g) was introduced earlier to describe 

canopy structure. When describing radiation penetration the leaf orientation function is 

combined with light direction and is called the G(a, <!>) function (Ross & Nilson, 1967). 

As explained by Ross (197 5), it characterises the dependence of the effective leaf area to 

radiation penetration on both the light direction (a, <!>)and on leaf orientation (a1, <1>1). It 

is defined as the projection of a unit foliage area in the direction (a, <I>): 
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(6.27) 

where n is the unit vector of light direction (a, <I>), n1 is the unit vector of leaf blade 

orientation ( a1, <j>1), sina arises from resolving equal units of direction into elevation and 

azimuth and cosnn1 is the cosine of the angle of incidence of light on the leaf blade; 

cosnn1 =cos a cosa1 +sin a sin a 1 cos( <j>- <j>1). (6.28) 

The G function may also be interpreted as the ratio of mean projected area of leaves on a 

plane normal to the sun's rays, to the actual leaf area. 

Attenuation of light in a canopy is modelled using Beer's law, as originally applied to 

canopies by Monsi and Saeki (1953) and subsequently developed by Ross (1975; 1981) 

and Goudriaan (1977). If the canopy is divided into a finite number of thin layers of 

equal leaf area, sufficiently thin so there is no mutual shading within each independent 

layer, then the probability of a light beam being transmitted ('tb) or not intercepted past a 

downward cumulative leaf area (L) is described by an exponential function; 

'th (L) = exp(-G( a, <I> )L/sin ~) (6.29) 

G(a, <j>)/sin~ is known as the extinction coefficient (kb). 'tb is also the fraction of leaf 

area at depth L in sunflecks, so that near the top of the canopy the probability of beam 

transmission is close to one, and most of the leaves are sunlit. Distribution of leaf angles 

in a wheat canopy is approximately uniform (Ross, 1975), in which case G is 

independent of beam direction and G = Y2 and kb = 0.5/sin~. It is apparent that the 

extinction coefficient is dependent on the solar elevation, light penetrating deeper into 

the canopy at high solar elevations. 

Direct Light 

The transmission function ('tb) is used to calculate the spatially averaged beam 

irradiance lb(L) relative to the beam irradiance at the top of the canopy lb(O); 

(/m2 gnd) (6.30) 
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This equation does not give the sunfleck light intensity. The beam intensity in the 

sunflecks is equal to that at the top of the canopy, but with a reduced leaf area in 

sunflecks. 

Diffuse Light 

Diffuse light from any point in the sky penetrates through a canopy with the same 

transmission coefficient as for beam light from that direction. Thus diffuse light 

transmission through a canopy is calculated by integrating the product of radiance of the 

sky (Nd) from direction n and the beam transmission ('tb) of that elevation (a) over the 

whole sky; 

'td(L) =-(
1 

) J NAL,n)'tb(L,a)sin acosa da dcp, 
I 0 21t 

d 

(6.31) 

where NiL,n) is the radiance of the sky defined as the photon flux per unit solid angle in 

direction n(a, cp) per unit area of sky at depth Lin the canopy and IiO) is the downward 

diffuse irradiance measured horizontally at the top of the canopy. 

Id (o) = J NAO,n)sin a cos a da dcp 
21t 

(6.32) 

Diffuse sky radiance varies greatly, being affected by solar elevation, atmospheric 

transmission, cloud type and cover. The variability is so great that there is no simple 

method of modelling or describing the spatial source distribution of radiance except by 

direct measurements which are difficult to make. Clear sky radiance typically has high 

circumsolar radiance, low radiance at approx. 90° to the sun, increasing radiance near the 

horizon and varies with solar elevation (Gates, 1980; Iqbal, 1983). Typical completely 

overcast sky has a 3 fold increase in radiance from the horizon to the zenith. This has 

been defined by many authors as the standard overcast sky (SOC). Another 

simplification, often used, is to assume that radiance distribution is uniform over the 

entire sky or isotropic and is known as the uniform overcast sky (UOC). By integrating 

this distribution around the azimuth from 0 to 27t, the relative contribution of diffuse 

radiance as a function of elevation is given by 

did(O,a) . 
( ) = 2smacosa da. 

Id 0 
(6.33) 
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This assumption simplifies the penetration integral so that it can be more easily solved 

(Cowan, 1968a; Ross, 1975); 

lt 

'td (L) = 2 J
0

2 exp(-kbL)sin a cos a da 
(6.34) 

= (1- L/2)exp(-L/2)-(L/2)
2 
E;(-L/2) 

where E;(x) is the exponential integral (Jahnke & Emde, 1945). Thus the diffuse light 

irradiance at depth Lis given by the expression; 

(6.35) 

where liO) is the diffuse light intensity at the top of the canopy. 
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Figure 6.3 Left: Diffuse light penetration into a canopy from a uniformly radiant 

sky calculated according to Cowan (1968a) (eq. 6.34) and an exponential 

approximation. Right: Residuals from the exponential fit. 

Solutions to eq. 6.34 are not easily calculated, so, following Goudriaan (1977), I 

approximated the diffuse penetration function with an exponential function, using a least 

squares fit (figure 6.3) to obtain a value for the diffuse extinction coefficient (kd). 

(6.36) 
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With a uniform sky radiance and Le= 3 the best fit value of kd is 0.785, which is lower 

than the value obtained by Goudriaan (1977, 0.805) due to his use of a greater leaf area. 

The maximum error of the exponential approximation is 2.7% overestimation at L = 0.5, 

where most leaves are sunlit anyway, while the 1.9% underestimate at L = 3.0 is 

acceptable for photosynthesis modelling. Use of this approximation greatly simplifies 

subsequent calculations. 

Numerical integration of actual clear sky radiance penetrating a canopy with uniform 

leaf angle distribution suggests that UOC radiance overestimates the penetration of 

diffuse light in a canopy (Ross, 1981). Exponential approximations (error< 4%) to this 

penetration show a linear decrease in the extinction with solar elevation up to approx. 

60° (fig. 6.4). The extinction coefficient obtained with UOC corresponds with the clear 

sky diffuse extinction when solar elevation is 60 - 70° above the horizon. 

1.1 ....-------------. 

1.0 

0.9 

0.8 ~~~-~~~~-~ 
0 3) 00 00 

B (degs.) 

Figure 6.4. Extinction coefficients calculated for clear sky diffuse radiance 

penetrating a canopy with uniform leaf angle distribution. Clear sky radiation 

penetration data are from Ross (1981 ). 

Down the canopy diffuse light from near the horizon will attenuate more quickly than 

that from the zenith. Opposing this is greater sky radiance from near the horizon 

compared with the zenith. I have ignored these effects and assumed that diffuse light is 

uniform in all directions at all depths in the canopy. 
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Scattered Light 

In a real plant canopy leaves do not absorb all the intercepted light, a proportion 

being reflected or transmitted, scattering light in all directions. The scattered light is re­

intercepted by adjacent leaves and either absorbed or rescattered. This multiple 

scattering increases canopy absorption beyond the absorption of individual leaves. These 

effects are modelled by an approximation of scattered light fluxes (Goudriaan, 1977). 

However to use this model correctly it is necessary to explain some detail of a more 

complex radiation transfer model. 

Following Cowan (1968a) and Goudriaan (1977), I have assumed that the leaf 

reflection (p1) and transmission ('t1) coefficients are equal and their sum is defined as the 

scattering coefficient (cr). In a canopy of Le> 3.0 reflection from the soil can be ignored. 

Error introduced with these assumptions is negligible for a canopy with spherical leaf 

angle distribution and facilitates an algebraic solution (Goudriaan, 1977). Detailed 

canopy light models (Goudriaan, 1977; Norman, 1979) calculate separate downward and 

upward light fluxes between thin layers (L1 = 0.1) of canopy. A layer transmission 

coefficient ( 't = exp[-kL1]) is used to calculate the primary fluxes in adjacent layers. The 

flux of scattered light is calculated from light intercepted by ~ach layer and the scattering 

coefficient; half directed upwards and half downwards. Several iterations of calculating 

fluxes in all layers of the canopy converge to a final solution of upward and downward 

fluxes. When the canopy leaf area is greater than 2.0 the upward light flux from soil 

reflection can be ignored (Goudriaan, 1977). 

This model is simplified, for canopies of large leaf area, by defining an extinction 

coefficient of the net light flux (!down - !up). The effective extinction coefficient (k') for 

the net downward light flux is related to the extinction coefficient with no scattering 

(called the black leaf extinction coefficient) (k) by the equation (Goudriaan, 1977) 

k' = k(l- cr)Yz. (6.37) 

The net beam light flux including scattering (l'b) is given by the equation 

(6.38) 
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where Peb(~) is the canopy reflection coefficient for beam light as a function of solar 

elevation. It accounts for the upward light flux that is lost as canopy reflectance and is 

determined empirically by the equation (Goudriaan, 1977) 

(6.39) 

and ph is the canopy reflection coefficient assuming horizontal leaves and is independent 

of solar elevation and is given by 

1 

1-(l-cr)2 
Ph= I. (6.40) 

1+(1-cr)2 

Numerical integration of sky light (UOC) penetration with scattering by leaves (I'd) 

showed that the total diffuse light extinction coefficient (k'd) is affected by the same 

factor as beam light (eq. 6.37) (Goudriaan, 1977): 

(6.41) 

where Ped is the canopy reflection coefficient for diffuse light and is calculated by 

numerical integration of the product of sky radiance and Peb(a.) for that direction by the 

equation 

(6.42) 

In the case of a uniform leaf angle distribution and cr = 0.15 the value of eq. 6.42 was 

calculated with UOC as Ped= 0.036 (lower than the value obtained by Goudriaan (1977 

0.) since he assumed cr = 0.20). 

In contrast to this model, Norman (1982) calculated scattered light fluxes using an 

extinction coefficient of k( 1-cr). It differs from the correct expression, presented by 

Goudriaan ( 1977), by the exponent of Yl, which arises from consideration of multiple 

scattering. 
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Total lrradiance 

So far direct, diffuse and scattered irradiance have been calculated as separate 

components. Plants, however, do not make these distinctions. Total irradiance including 

scattering (/') is calculated as the sum of beam light with scattering plus diffuse light with 

scattering. 

I'(L) = 1;(L) + 1;(L) 

= /b(O)(l-pcJ exp(-k;L) + IiO)(l- PcJexp(-k;L) 
(6.43) 

Sunlit and shaded leaves 

The fraction of leaves in sunflecks, fsun• is derived from the beam penetration 

function, 

(6.44) 

The fraction of leaves in shade is 1-fsun· 

Irradiance of sunlit Usun) and shade Ush) leaves is calculated separately by assuming 

that diffuse, scattered diffuse and scattered beam light impinges on all leaves, while sunlit 

leaves in addition receive direct beam light. 

[sh (L) = 1; (L) +lbs (L) (6.45) 

The net scattered beam light (lbs) is calculated as the difference between the beam flux 

(lb) and the beam flux with scattering (l'b). 

lbs(L) = 1;(L)-lb(L) 

= lb(O)((l-pcJexp(-k;L)-exp(-kbL)) 
(6.46) 

Irradiance of leaves in sunflecks is the beam intensity, which is constant through the 

canopy, plus the total diffuse light. 

(6.47) 
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Sunfleck irradiance is dominated by beam intensity so there is only a small reduction in 

sunfleck light intensity with depth (see figure 6.5), although there is a reduction in the 

fraction of leaves in each layer in sunflecks. 
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Figure 6.5. Modelled light penetration through a canopy. lrradiance above the 

canopy was 2100 (µmol quanta.m·2.s-1), with 15% as diffuse light and a solar 

elevation of 60°. Left Fluxes are; beam (lb, eq. 6.30), diffuse (/cJt eq. 6.35), total 

irradiance including scattering (/', eq. 6.43), irradiance in shaded Ush• eq. 6.45) and 

in sunfleck Usun• eq. 6.47) positions. Right Net downward scattered fluxes of 

beam (lbs• eq. 6.46) and diffuse (Ids• eq. 6.35 - eq. 6.41} light and the fraction of 

canopy that is sunlit (fsun• eq. 6.44). The negative fluxes of scattered light at the 

top of the canopy are the upward fluxes which appear as canopy reflection. Note 

these irradiances are as would be measured on a horizontal plane, they are not 

irradiances at the angle of leaves, nor absorbed irradiance (as explained later}. 

Absorbed Light 

At this stage I have described beam, diffuse and scattered irradiance. Total 

irradiance at any depth in a canopy is the sum of these components. However there are 

many other factors in addition to irradiance that affect the amount of light absorbed. 

Light absorbed per unit leaf area is additionally affected by leaf interception, leaf angle, 

leaf absorption and multiple scattering. Calculation of absorbed light requires attention 

to these factors as outlined below. 
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Absorption of all light fluxes per unit leaf area is determined as the change in 

irradiance with depth, which mathematically is the first differential. The effect of leaf 

absorption depends on whether scattering is included in the flux or whether it is treated 

separately. If a flux does not include scattering, then absorbed light is further reduced by 

the absorptivity of the leaves (1-cr). Alternatively if the flux is a net flux where canopy 

reflectance and scattering are already included then absorbed light is calculated simply as 

the differential. 

Considering only direct beam light, the average beam light absorbed per unit leaf area 

(lib) is calculated by the first differential of eq. 6.30 by the leaf absorptivity. 

1/b(L) = -a1b(L)/aL(1-cr) 

= kblb(O)exp(-kbL)(l- cr) 

= kblb(L)(l- cr) 

(6.48) 

Thus, absorbed beam irradiance averaged over an entire layer at any position is the 

product of irradiance at that depth, the extinction coefficient and the leaf absorptivity. In 

contrast the expression for the beam light with scattering absorbed per unit leaf area does 

not include the leaf absorptivity (from eq. 6.38): 

l~(L) = k;1;(L) 

= k;Ib(O)(l- Pcb) exp(-k;L) 
(6.49) 

Absorbed diffuse light per unit leaf area (lid) is also calculated as the differential (of eq. 

6.35), 

(6.50) 

or including the scattered diffuse light (!'Id), the differential of eq. 6.41, 

I(iL) = k;1;(L) 

= k;Id(O)(l-pcJexp(-k;Lf 
(6.51) 

Absorbed total irradiance including scattering (1'1) is calculated as the sum of absorbed 

beam with scattering (eq. 6.49) and absorbed diffuse with scattering (eq. 6.51). 
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(6.52) 

Sunlit and shaded leaves 

Separation of light absorption into sunlit and shade leaves is calculated as the 

differential of the respective irradiances. Thus light absorbed by shade leaves per unit 

leaf area (115h) is calculated as the sum of diffuse absorbed and scattered beam absorbed. 

(6.53) 

Absorbed scattered beam light is calculated as the difference between absorbed beam 

(eq. 6.48) and absorbed beam with scattering (eq. 6.49) rather than the differential of eq. 

6.46, since this would not allow for scattered light generated by intercepted beam light 

that is not absorbed. 

l/bs(L) = I~(L)-1/b(L) 

=lb (o)(k;(1- Pcb) exp(-k;L)-kb(l- cr)exp(-kbL)) 
(6.54) 

For the sake of completeness, the absorbed scattered diffuse light was calculated as 

the difference between the absorbed diffuse light profile (eq. 6.50) and the absorbed 

diffuse with scattering light profile (eq. 6.51), 

I1ds(L) = 1;AL)-I1AL) 

= IAo)(k;(1-pcJexp(-k;L)-kAl-cr)exp(-kdL))" 
(6.55) 

Irradiance absorbed by sunlit leaves is calculated as absorbed beam plus absorbed 

diffuse and absorbed scattered beam. However while diffuse and scattered irradiance are 

assumed to be isotropic, beam light is unidirectional and thus the angle of incidence on 

leaves must be considered. 

There are two methods of calculating light intensity, when considering leaf angles, 

that at first appearances are quite different. Light intensity at the angle of individual 

leaves depends on the cosine of the angle of incidence of beam light with the leaf surf ace 

according to Lambert's law, while the light absorbed per unit leaf area is the differential 

of irradiance with depth. These apparently different approaches are related since the 

differential of irradiance with depth is determined by the attenuation of light which is a 
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function of the distribution of leaf angles. Thus leaf angles affect the differential of 

irradiance and they affect intensity calculated according to Lambert's law. It follows that 

Lambert's law determines intensity at any leaf angle, while the absorbed irradiance 

calculated from the differential applies only to leaves at the average cosine of leaf angles. 

In a canopy with a uniform leaf orientation there is a range of leaf angles. Light 

intensity on leaves perpendicular to the sun's rays will have maximum intensity, while 

leaves parallel to the sun's rays will have the lowest illumination from only diffuse and 

scattered light (figure 6.6). 

Figure 6.6 Light penetration through a canopy of uniform leaf-angle distribution, 

which is represented by hemisperical arrays of leaves. Direct beam light is 

predominantly intercepted by leaves at the top of the canopy, but some sunflecks 

penetrate even to the lowest leaves. The irradiance of the leaves depends on the 

angle at which the beam strikes the leaf surface. Leaves perpendicular to the 

beam absorb the greatest amount of light, and those parrallel the least. 

Since with a uniform leaf-angle distribution all orientations are equally probable, the 

distribution of beam-leaf incidence angles is independent of solar position and the 

distribution is identical to that of the leaf angles. Beam intensity on a plane perpendicular 

to the beam direction is calculated by dividing beam intensity on a horizontal plane by the 

sine of solar elevation (lb(O)lsin~). The absorbed beam irradiance in sunflecks (l1bsun) at 
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the mean leaf angle is given by the product of the beam intensity and the cosine of the 

leaf angle and is independent of depth. By definition beam irradiance of shade leaves is 

zero. 

(6.56) 

This equation is related to eq. 6.48 by recalling that the average cosine of leaf angles of a 

uniform leaf orientation is 0.5 (Table 6.2), and that kb = 0.5/sin~. Total absorbed light 

on sunlit leaves (11sun) is the sum of absorbed beam plus absorbed total diffuse light. 

(6.57) 

This equation is used to calculate the light absorbed at various leaf angles of sunlit 

leaves. An example of the absorbed light profiles for the mean cosine of leaf angle is 

shown in figure 6.7 

The calculation of absorbed light for the sun/shade model could be simplified by the 

equations presented by Norman ( 1982), at least in simple homogeneous canopies. The 
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Figure 6.7 Modelled light absorption though a canopy; net absorbed including 

scattered light (/',. eq. 6.52), beam absorbed (!,,, eq. 6.48), diffuse absorbed (/[d. 

eq. 6.50), net absorbed by sunlit leaves Uisun• eq. 6.57), net absorbed by shade 

leaves Utsh• eq. 6.53), scattered beam absorbed UtbS' eq. 6.54) and scattered 

diffuse absorbed UtdS' eq. 6.55). Conditions above the canopy as in figure 6.5 and 

assuming a uniform leaf angle distribution. 
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equations used here were retained to allow comparison with a multi-layer model, without 

additional uncertainly introduced by the approximations of Norman's simpler equations. 

The more complex equations also allow internal checks within the model to reduce the 

chance of errors. For example, light absorbed by a canopy can erroneously be greater 

than incident light (table 5 of Norman, 1980). These equations also ensure that 

calculations are for absorbed light, not just incident light, which in the case of diffuse 

light is often overlooked. 

6.2.4. Distribution of leaf nitrogen in canopies 

Distribution of leaf nitrogen, N1, between leaves in the canopy was modelled as 

exponentially decreasing with depth in the canopy (Hirose & Werger, 1987a). Leaf 

nitrogen was converted to Rubisco capacity, V1, assuming a linear relationship between 

N1 and V1• 

The model of Hirose and Werger (1987a) describes leaf nitrogen distribution, N1(L), 

in the canopy relative to a nominal nitrogen at the top of the canopy, N
0

, according to the 

equation 

(6.58) 

where kn is the coefficient of leaf nitrogen allocation. Describing the distribution as a 

function of the relative position in the canopy (ULc) indirectly defines the maximum and 

minimum leaf nitrogen contents and removes the direct effect of canopy leaf area on the 

distribution. 

A linear relationship between V1 and N1 was assumed (Evans, 1983; Field & Mooney, 

1986) with a residual leaf nitrogen content of N1 = 25 mmol.m-2 (ie. - 0.5% N, when V1 = 
0): 

(6.59) 

where Xn• is the ratio of measured Rubisco capacity to leaf N. Xn was calculated from 

values of V1 (from leaf photosynthetic measurements) and from measurements of N1• 

These exponential functions imply a continuous decline in leaf photosynthetic 

capacity. However leaves of wheat plants do not exist at a continuum of depths, nor of 
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photosynthetic capacities, but rather at discrete intervals. I have assumed that all flag 

leaves at the top of the canopy have similar photosynthetic capacity and that the next 

leaf, or penultimate, has substantially lower photosynthetic capacity. This model of leaf 

nitrogen distribution was applied to discrete leaf layers by calculating the mean leaf 

nitrogen of a cohort of leaves and similarly a mean photosynthetic capacity of the layer. 

6.2.5. Canopy Photosynthesis 

In a uniform crop, such as wheat, it is assumed that the canopy is horizontally 

homogeneous, and that only vertical variation need be considered. The main source of 

variation in the physical environment is the light intensity. Since the response of 

photosynthesis to light is non-linear (eqs. 6.3 & 6.4) the method of spatial integration can 

introduce errors (Smolander, 1984). The requirement for accuracy at this level of detail 

needs to be weighed against the complexity of the model and the concomitant increase in 

the number of calculations required (Norman, 1980). 

To overcome the non-linear response of leaf photosynthesis to irradiance, integration 

of canopy photosynthesis, by s~mmation of leaf photosynthesis, requir~s the division of a 

canopy into many leaf categories based on their absorbed irradiance. As outlined in the 

introduction, the parallel profiles of leaf photosynthetic capacity and absorbed irradiance 

offer an alternative approach to canopy integration; scaling by use of a big leaf model. 

Three canopy models were compared, that differed in the number of layers used to 

represent the canopy; a simple big leaf model, a sun/shade model and a multi-layer 

model. 

The simplest is a big leaf model, which assumes that the canopy can be represented 

by a single big leaf. This assumption is valid when the vertical profile of photosynthetic 

capacity is optimally distributed to maximise photosynthesis, which in tum means that it 

is distributed in proportion to the absorbed light profile (Farquhar, 1989). While the 

distribution of photosynthetic capacity can be optimal at an instant in time, it can not be 

optimal for all times, since the leaf photosynthetic capacity can not be reallocated 

between leaves on the time scale of light variation in a canopy. Light distribution varies 

in a canopy as leaves flutter, with clouds and as the light penetration changes with the 

traverse of the sun across the sky on its diurnal and seasonal course. Extending the 

concept of optimal distribution of photosynthetic capacity to maximising daily 

photosynthesis, implies that photosynthetic capacity be distributed in proportion to the 
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profile of daily absorbed light, which is the summation of light absorbed by each layer of 

a canopy over the whole day. If the distribution of photosynthetic capacity follows that 

of the daily absorbed light, then the big leaf model may work, at least to the extent that 

the instantaneous light profile is similar to that of the daily absorbed light. 

The penetration of beam light, its' variation through the day and the range of leaf 

angles in a canopy of uniform leaf angle distribution, all affect the ability of the big leaf 

model to simulate the diurnal changes in canopy photosynthesis. These canopy features 

are explicitly incorporated by dividing the canopy into sunlit and shaded fractions and 

modelling each fraction separately with a big leaf model. This is the second canopy 

model tested, the sun/shade model. It is more complex than the simple big leaf model, 

but its' more detailed treatment of the light profiles overcomes some of the errors 

associated with the simplifying assumptions of a big leaf model. 

The most complex method, the multi-layer model, integrates the non-linear light 

response of leaf photosynthesis by treating the canopy as many layers with many leaf­

angle classes. Photosynthesis is calculated for each of these categories and then summed 

to obtain canopy photosynthesis. Details of these canopy models are presented in the 

following sections. 

6.2.5.1. Multi-Layer Integration 

This method of calculating canopy photosynthesis was based on the CUPID model 

(Norman, 1982). The canopy was split into multiple layers (L1 = 0.1). Each layer was 

separated into sunlit and shaded fractions (eq. 6.44) and the sunlit fraction divided into 5 

leaf angle classes ( eq. 6.15). Absorbed irradiance for each leaf class was calculated for 

shaded (eq. 6.53) and sunlit (eq. 6.57) fractions separately. Leaf nitrogen was calculated 

for leaves of each layer (eq. 6.58) and converted to photosynthetic capacity (eq. 6.59). 

Leaf photosynthesis is calculated for each leaf class ( eqs. 6.1-6.6) less leaf respiration 

calculated from the Rubisco capacity (eq. 6.7). Canopy photosynthesis is calculated by 

the summation of the product of leaf photosynthesis by the leaf area in each class. 

6.2.5.2. Big-Leaf Model 

In contrast to the multi-layered model, a big leaf model integrates the input profiles 

and calculates a single photosynthetic rate as though the canopy were a single big leaf. 

Canopy absorbed irradiance, nitrogen, photosynthetic capacity and leaf respiration were 
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calculated for the entire canopy by integration as outlined below. The leaf 

photosynthesis model ( eqs. 6.1-6.6) was then applied to the canopy as though it were a 

single big leaf. 

Canopy Light Absorption 

The irradiance absorbed by the canopy (per m2 ground) was determined by 

integrating i'1 (eq. 6.52) over the entire canopy leaf area (Le= m2 leaf/m2 gnd). 

(6.60) 

Canopy nitrogen and photosynthetic capacity 

Total canopy nitrogen, Ne, was calculated by integration of the leaf nitrogen profile 

(eq. 6.58) over the entire canopy. 

NC= fo4 N1dL 

= N0 (1-exp(-kJ)j(kn/LJ 
(6.61) 

Canopy photosynthetic capacity, Ve, was calculated as the integral of leaf 

photosynthetic capacity over the entire canopy. 

~=re VidL = Xnrc NI -25dL 

= LcXn(N0 (1-exp(-kn))/kn -25) 
(6.62) 

Leaf respiration of the canopy, Rrc• was calculated by integration of leaf respiration, 

Ric = fo4 R1dL 

= Rifi'i. ~ 

where R/V1 is the ratio of leaf respiration to leaf Rubisco capacity (eq. 6.7). 

(6.63) 

An alternative approach to photosynthesis modelling is to allow co-limitation of 

photosynthesis by both electron transport and Rubisco (Kirschbaum & Farquhar, 1984; 
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Collatz et al., 1991), which can be applied to canopies (Sellers et al., 1992; Wang & 

Jarvis, 1993; Amthor, 1994). Mathematically this is achieved by a non-rectangular 

hyperbola, 

(6.64) 

where Ac is determined as the smaller root of the solution. The degree of co-limitation 

and thus the curvature of the photosynthesis light response is determined by the value of 

ec 

6.2.5.3. Sun/Shade Model 

This final canopy integration method splits the big leaf model into sunlit and shaded 

fractions. Since this fraction changes during the day with solar elevation (eq. 6.44), so 

too the light absorption and the photosynthetic capacity of sunlit and shaded leaf 

fractions change. Photosynthetic capacity of individual leaves do not change during the 

day, but the division between the sunlit and shaded portions of the canopy does. 

Calculation of light absorption and photosynthetic capacity of the separate sunlit and 

shaded fractions is outlined in the following sections. 

Canopy Light Absorption of Sunlit and Shaded Fractions 

Irradiance absorbed by the sunlit leaf fraction of the canopy (11csun) is calculated as an 

integral of absorbed irradiance (eq. 6.57) and the sunlit leaf area fraction (eq. 6.44). This 

irradiance is absorbed by only the sunlit part of the canopy. The sunlit leaf area index of 

the canopy is 

(6.65) 

while the shaded leaf area index of the canopy is Lsh = Lc - Lsun· 

Irradiance absorbed by the separate sunlit and shade fractions of the canopy is 

defined such that the total light absorbed (/1c) is the sum of the two parts, 

(6.66) 
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The total irradiance absorbed by the canopy and the components absorbed by the sunlit 

and shaded fractions are all expressed on a ground area basis (µmol quanta.m-2 

ground.s-1). The irradiance absorbed by the sunlit fraction of the canopy is given as the 

sum of diffuse light, scattered beam and direct beam components 

[lcSun = t'< [/Sun (L)fsun (L)1L 

4: ' Le 4: ' =Io [ld(L)hun(L}JL+ Io [lbs(L)hun(L}JL+ Io flb(L)fsun(L}JL 

(6.67a) 

which are, 

(6.67b) 

(6.67c) 

(6.67d) 

Irradiance absorbed by the shaded leaf area of the canopy is an integral of absorbed 

irradiance in the shade (eq. 6.53) and the shaded leaf area fraction. Alternatively it can 

be calculated as the difference between total canopy absorption (eq. 6.60) and the sunlit 

leaf area absorption (eq. 6.67). 

(6.68a) 

The last line expresses the irradiance absorbed by the shaded leaf area as the sum of 

diffuse irradiance absorbed by shaded leaves and scattered beam irradiance absorbed by 

shaded leaves, which are 
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(6.68b) 

. (6.68c) 

An example of canopy absorption of irradiance and its separation into sunlit and shaded 

fractions is presented in figure 6.8. 
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Figure 6.8 Modelled irradiance and absorption (per unit ground area) by a 

canopy of leaf area = 2.4. /0 , total irradiance above canopy; 11c, irradiance 

absorbed by entire canopy ; 11csh• irradiance absorbed by shaded leaf fraction of 

canopy; 11cSun• irradiance absorbed by sunlit leaf fraction of canopy; f sun• sunlit leaf 

area fraction. 
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Photosynthetic Capacity of sunlit and shaded leaf fractions. 

Photosynthetic capacity of the sunlit leaf fraction of the canopy, Vcsun' is calculated 

by an integral of the leaf photosynthetic capacity (eq. 6.59) and the sunlit leaf area 

fraction (eq. 6.44). 

(6.69) 

Photosynthetic capacity of the shaded leaf fraction of the canopy, Vcsh• is calculated 

by an integral of the leaf photosynthetic capacity ( eq. 6.59) and the shaded leaf area 

fraction (eq. 6.44). As with the calculation of absorbed light the photosynthetic capacity 

of the shade leaf fraction can be calculated as the difference between canopy 

photosynthetic capacity and the shade fraction photosynthetic capacity. 

V.:sh =foLc Vi(L)fsh(L')<iL 

= V., - V.:sun 

V.:sh = Xn [

(1-exp(-kJ)/kn/ Lc J 
No -(1-exp(-kn -kbLc))/(kn/ Lc +kb) 

-25(Lc -(1-exp(-kbLc))/kb) 

(6.70a) 

(6.70b) 

An example of the distribution of photosynthetic capacity between sunlit and shaded leaf 

fractions of the canopy is shown in figure 6.9. 

Canopy photosynthesis was obtained by adding the photosynthetic contribution from 

the two components, minus the leaf respiration of the canopy (R1c), 

(6.71) 
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Figure 6.9 Photosynthetic capacity of the entire canopy, Ve, (eq. 6.62) and 

separated into sunlit, Vcsun• (eq. 6.69) and shaded, V cSh• (eq. 6.70) leaf fractions. 

The fraction of the canopy that is sunlit, fcsun• is also shown. 
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6.3. Results & Discussion 

6.3.1. Distribution of Leaf Nitrogen and Absorbed Light 

Model parameters were obtained from measurements in a canopy of wheat (Table 

6.3). Values for other parameters were assumed and are given in the List of Symbols. 

Measurements of PAR were used in the multi-layer model to generate the predicted 

distribution of absorbed light in relation to the distribution of leaf nitrogen in the canopy 

(figure 6.10). Nine leaf-angle classes were used analagous to the angles given for five 

classes in Table 6.2. An instantaneous profile of absorbed light was calculated by 

averaging the absorbed light of all leaves (sunlit and shaded) in a layer at midday 

(maximum solar elevation was 68° above the horizon). Integration of all such 

distributions for all times during the day gave the daily profile of absorbed irradiance. 

Table 6.3 Parameter values for the multi-layer model obtained from 

measurements in a wheat crop at Wagga Wagga, NSW, four days after anthesis. 

Parameter 
Date 
latitude 

a 
L,, 
V1 
N1 
Nn 
k 

Value 
25-0ct 

-35° 3.5' s 
0.75 
2.4 

100 
120 
136 

0.54 

The basis for the big leaf models of canopy photosynthesis (Sellers et al., 1992; 

Amthor, 1994) is that leaf nitrogen should be distributed in a canopy in proportion to the 

time-averaged profile of absorbed light. It can be seen in figure 6.10 that this wheat 

canopy does indeed have a distribution of leaf nitrogen that is approximately in 

proportion to the profile of daily absorbed light. If leaf nitrogen were exactly distributed 

in proportion to the absorbed light, the modelled distribution would be a straight line 

diagonally across the figure. In addition, an instantaneous profile of absorbed light is 
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also shown in figure 6.10. This too has a distribution that is nearly in proportion to the 

profile of leaf nitrogen, giving confidence to the basis of the big leaf models. 
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Figure 6.10 Modelled distribution of the midday average (of sunlit and shaded 

leaves) (-, µmol quanta.m·2 leaf.s-1) and daily average (- - -, (mol quanta.m·2 

leaf.d-1) absorbed irradiance by leaves in a homogenous canopy, of uniform leaf 

angle (a) distribution, as a function of leaf nitrogen (N) content (mmor.m·2 leaf). 

With the parameters for the multi-layer model set as above, an instantaneous 

distribution of absorbed light in relation to leaf nitrogen was predicted for the sunlit and 

shaded leaves separately (figure 6.11). The distribution presented was calculated for 

midday, other times gave similar distributions but at lower levels of absorbed light. The· 

vertical (or z) axis indicates the distribution or proportion of leaves at each level of 

absorbed light for the sunlit and shaded leaf fractions separately. A uniform leaf angle 

distribution was assumed, so that the probability of a leaf being at an angle between a 

and a+ dais Pr(a, a+ da) = sina da. This leaf angle distribution function together 

with the fraction of sunlit leaf area (eq. 6.44) generated the curved surface and is shown 

as the proportion of sunlit leaves on the left-hand vertical or z axis. Each layer of the 

canopy, as indicated by leaf nitrogen content, has a range of absorbed light for the sunlit 

leaves at different leaf angles, which were calculated from eq. 6.57. Leaves near 

perpendicular to the sun beam direction had the highest absorbed light (2040-1830 

µmol.m·2.s-l), but were only a small proportion of the sunlit leaves. Leaves parallel to 

the beam direction absorbed only diffuse light (430-220 µmol.m·2.s·1) and were a high 
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proportion of the sunlit leaves. At any particular leaf angle absorbed light decreased 

slightly with depth in the canopy due to the attenuation of diffuse and scattered light. At 

layers deeper in the canopy, indicated by lower leaf nitrogen, the proportion of sunlit 

leaves at each light level decreased. The proportion of each layer shaded increased with 

depth in the canopy, shown as the vertical plane at the rear of figure 6.11 and the right­

hand or z axis. 

In contrast to the distribution of average absorbed light (figure 6.10), when the 

distribution of absorbed light for the sunlit and shaded fractions of the canopy are shown 
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Figure 6.11 Model predictions of the instantaneous distribution of light absorbed 

by sunlit and shaded leaves (µmol quanta.m-2 leaf.s-1) in relation to the leaf 

nitrogen distribution. Profiles were generated as in figure 6.10. The vertical axis 

on the left is the probability distribution of sunlit leaves with respect to the light 
absorption defined by the leaf angle (Lamberts cosine law), and is Pr(cx, ex + 
da)/da = sina. The distribution of sunlit leaves is represented by the 3 

dimensional surface (left vertical axis). The distribution of shade leaves was 

assumed independent of leaf angle and is represented by the vertical plane at the 

lowest absorbed light levels (-o-, right vertical axis). 
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separately (figure 6.11 ), its relationship with the distribution of leaf nitrogen is very 

different. No longer is the instantaneous distribution of absorbed light in proportion to 

the distribution of leaf nitrogen (ie. a diagonal line). When the sunlit and shaded leaves 

were averaged the distribution of leaf nitrogen was approximately in proportion to the 

instantaneous distribution of absorbed light (figure 6.10). In contrast, the profile of leaf 

nitrogen and the distribution of absorbed light for the sunlit and shaded leaves of the 

canopy show no resemblance of being related to each other (ie. no diagonal line across 

figure 6.11, cf. figure 6.10). 

Inspection of the average light profiles (figure 6.10), suggests that leaf nitrogen is 

approximately distributed in proportion to profiles of both daily and the instantaneous 

absorbed light, which is a requirement for the simplification in the big leaf models. 

However, if the distribution of absorbed light of sunlit and shade leaves is used, then it is 

apparent that the distribution of leaf nitrogen is not in proportion to the profile of 

absorbed light (figure 6.11) and that the basis for the big leaf models is not valid. 

This conflict arises because the time averaged distribution of absorbed light in 

canopy is quite different to the instantaneous distribution of absorbed light, when 

sunfleck penetration and the effect of leaf angles are cqnsidered in calculatfog the 

absorbed light profiles. As stated in the introduction many canopy modellers have 

recognised the importance of treating sunlit and shaded leaves separately (Sinclair et al., 

1976; Norman, 1980). The analysis presented here has applied that principle to the 

profiles of absorbed light and leaf nitrogen required by the new generation of big leaf 

models (Sellers et al., 1992; Amthor, 1994). If average profiles of light are used, 

contradicting the dictum of keeping sunlit and shaded leaves separate, then the profile of 

absorbed light is in proportion to the profile of leaf nitrogen. A big leaf model working 

from this assumption will then have errors associated with averaging the light profiles, 

which have been shown to be large (Sinclair et al., 1976; Norman, 1980). In fact the 

models of Sellers et al., (1992) and Amthor (1994) hide these errors by using a curvature 

factor in the response of canopy photosynthesis to absorbed light. I will demonstrate the 

effect of this curvature factor in a later section. 

6.3.2. Optimal Distribution of Leaf Nitrogen 

Profiles of average absorbed irradiance are also used in several models that examine 

the optimal distribution of leaf nitrogen to maximise canopy photosynthesis (Hirose & 
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Werger, 1987a; Wu, 1993; Badeck, 1995; Sands, 1995). This greatly simplifies the 

analysis, but unless the canopies are grown under continuous diffuse light, the profile of 

average irradiance is not a realistic representation of canopies receiving direct beam light, 

that will have sunflecks penetrating to all levels of the canopy and (assuming a uniform 

leaf angle distribution) a range of leaf angles with different amounts of absorbed 

irradiance at all levels in the canopy. 

I parameterised the multi-layer model as described above, but with canopy layers of L 

= 0.5 and five leaf-angle classes (to speed the optimisation) and examined the distribution 

of leaf nitrogen required to maximise the daily integral of canopy photosynthesis. Total 

canopy photosynthetic Rubisco capacity was kept constant at 225 µmol.m-2.s-1 (ground 

area basis), but reallocated between different layers. Two approaches were taken 

regarding assumptions about using absorbed light to calculate leaf photosynthesis. First, 

the light was averaged from all leaves of a layer to calculate the average rate of 

photosynthesis. Second, absorbed light for each of the five leaf-angle classes of sunlit 

leaves and the shaded leaves was calculated separately and converted to leaf 

photosynthesis. The average profile of absorbed light was identical in both cases. The 

optimum distribution of leaf photosy~thetic capacity was determined for each case by 

calculating the sensitivity of photosynthesis of each layer to an additional unit of 

photosynthetic capacity, dA/dV. Units of photosynthetic capacity were manually moved 

from layers with low values of dA/dV to layers with high values of dA/dV, until all layers 

had equal values of dA/dV, which is the condition of maximum canopy photosynthesis 

(Field, 1983). This manual redistribution of photosynthetic capacity avoided any 

assumptions about the shape of the optimal distribution of leaf photosynthetic capacity in 

the canopy. The final optimal distributions together with the actual measured 

distribution are shown in figure 6.12. 

The actual profile (measured in the field and described by parameters in Table 6.3) 

was significantly different from a uniform distribution of leaf photosynthetic capacity. 

Both optimal distributions had steeper profiles of leaf photosynthetic capacity than the 

actual measured profile, with more capacity at the top and less capacity lower in the 

canopy. The optimal distribution obtained with calculations based on separate sunlit and 

shaded leaves was steeper than when the light was averaged. 

Daily canopy photosynthesis for the optimal distribution increased by 9 % when 

sunlit and shaded leaves were calculated separately compared to that obtained with the 
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actual distribution, but only by 5 % when average light was used. Daily canopy 

photosynthesis with the actual distribution of leaf photosynthetic capacity increased by 

19 % with the assumption of averaged light compared to that obtained with separate sun 

and shade components. Clearly, assumptions about averaging of light in a canopy affect 

conclusions as to the optimal distribution of leaf photosynthetic capacity. 

Figure 6.12 Modelled distributions of leaf photosynthetic capacity, based on 

measurements in a wheat canopy (Actual, ...,-Q-), the optimum using average 
absorbed light for each layer (optimum - average, ···l'.l··-) and the optimum with 

calculations for sunlit and shaded leaves separately (optimum sun/shade, - - o - -). 

The amount of photosynthetic capacity at the top of the canopy was perhaps 

unrealistically high for the distribution based on sunlit and shaded leaves. A curved 

relationship between leaf photosynthetic capacity and leaf nitrogen may have been more 

appropriate as this would have prevented such high values of leaf photosynthetic 

capacity from being predicted in the optimal solution. However, a different relationship 

between leaf photosynthetic capacity and leaf nitrogen would not significantly alter the 

comparison as it would affect both optimal solutions. 
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6.3.3. Comparison of Canopy Photosynthesis Models 

Predictions from several multi-layer models have been compared with field 

measurements of canopy photosynthesis and were capable of adequately reproducing 

diurnal trends (Lemon et al., 1971; Caldwell et al., 1986; Norman & Polley, 1989; 

Grant, 1992a). On this basis multi-layer models have been used as a baseline for 

comparing simplified canopy integration schemes (Norman, 1980; 1993; Goudriaan, 

1986; Baldocchi, 1993; Johnson et al., 1989; Reynolds et al., 1992; Sinclair et al., 

1976). While comparisons of models with field data are unequivocally the ultimate test, 

comparisons between models allow structural differences to be tested without the 

compounding effects of parameter uncertainties. 

The predicted response of canopy photosynthesis to absorbed light was compared for 

the multi-layer, sun/shade and big leaf canopy models (figure 6.13). The simulations 

were conducted with environmental variables set at constant values of: Ta= 20 °C, ea= 

1.0 kPa, ca = 33 Pa and ga = 100 mol.m·2.s·1 (ie. zero aerodynamic resistance). The 

diurnal variation of incident light was taken from measurements at Wagga, on the 25-

0ct. Simulations for the big leaf model were made with the canopy curvature factor set 

(!.S, Sc = 1.0, and by adjusting Sc to obtain the best fit with the multi-layer model (Sc = 

40 
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Figure 6.13 Comparison of simulated response of canopy photosynthesis to 

absorbed light for the multi-layer(-), sun/shade (- - -) and big leaf(····") models 

with a leaf area index of 2.4 (left panel) and 5.0 (right panel). Simulations from 

the big leaf model are shown with ec = 1.0 and 0.94, obtained by fitting. ec = 0.94 

was used for the simulations at high leaf area index. 

223 



Chapter Six 

0.94). The simulations at high leaf area index were made with the same value of Sc= 

0.94. Simulations by the multi-layer model were used as the standard for evaluation of 

the big leaf model and the sun/shade model. 

Simulated response of canopy photosynthesis to absorbed light was quite unrealistic 

from the big leaf model with Sc= 1.0. Adjustment of Sc improved the simulation by the 

big leaf model, but the shape of the response to absorbed light still did not match that 

predicted by the multi-layer model. Simulations from the sun/shade model slightly 

overestimated canopy photosynthesis at high light compared to the multi-layer model, 

but otherwise accurately reproduced the response of canopy photosynthesis to absorbed 

light. 

At high leaf area index, canopy photosynthesis, as simulated by the multi-layer 

model, showed less tendency to reach light saturation than at low leaf index. The 

sun/shade model again accurately reproduced the response of canopy photosynthesis to 

absorbed light. With Sc = 0.94, the big leaf model significantly overestimated canopy 

photosynthesis, particularly at high light. Better simulations by the big leaf model were 

obtained by again adjusting the curvature factor. 

The magnitude of the error in the Big-Leaf model predictions of gross canopy 

photosynthesis were estimated by calculating the daily gross photosynthesis over a range 

of canopy leaf areas and leaf photosynthetic capacities (figure 6.14). The predictions of 

the Big-Leaf model were 25% greater than the multi-layer model at a leaf area of 4 and 

50% greater at a leaf area of 6. The errors of the Big Leaf model when leaf 

photosynthetic capacity was changed were smaller, but still significant, overestimating by 

10% when V1 = 150 µmol.m-2.s-1• There was no effect of C02 concentration on the 

performance of the big leaf model (data not shown). 

Selection of a value of Sc in the big leaf model is difficult a priori, but easier a 

posteriori. I fitted the big leaf model by adjusting the value of Sc such that the big leaf 

model predictions matched the multi-layer model predictions by minimising the sum of 

residuals squared. The value of Sc, required to give the best fit, varied with leaf area 

index and leaf nitrogen content, but not with atmospheric C02 concentration (figure 

6.15). At low leaf area index Sc approached 1.0 and decreased as the canopy leaf area 

index increased. ec approached 1.0 at both low and high leaf nitrogen content and 

reached a minimum of 0.905 at a leaf nitrogen content of 130 mmol.m-2. 
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Figure 6.14 Error in the Big-Leaf model prediction of daily gross photosynthesis 

compared with the multi-layer model predictions with changing canopy leaf area 

(Le) and leaf photosynthetic capacity ( ~- Model simulations were made using 

diurnal environmental data from 25-0ct with coefficients obtained for the Matong 
crop; Le= 2.41, V1 = 93 µmol.m-2.s-1 and a fitted ee = 0.94. 
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Figure 6.15 Variation of the parameter of canopy photosynthesis co-limitation, ee, 

with canopy leaf area and leaf nitrogen content of leaves at the top of the canopy. 

Values were obtained from fitting the big leaf model predictions to those of the 

multi-layer model and minimising the squared sum of residuals. 
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Use of co-limitation of photosynthesis in canopy photosynthesis models is attractive 

since it allows the use of simple big leaf models. Unfortunately the value of 0c is not 

constant and varies with the leaf nitrogen content as well as the canopy leaf area. In 

contrast, the predictions from the sunlit/shade big leaf model match those of the multi­

layer model without the use of an empirical fitting parameter. 

Measured diurnal courses of environmental variables were used to predict gross 

canopy photosynthesis for the same wheat canopy as described previously for the 25-

0ct. Predictions from the sun/shade model closely matched both the multi-layer model, 

as shown in the previous simulations, and also matched gross canopy photosynthesis 

(measured net canopy C02 flux plus respiration) (figure 6.16). The electron transport­

and Rubisco-limited rates of canopy photosynthesis are shown for the sunlit and shaded 

fractions of the canopy as predicted by the sun/shade model. In the sun/shade model the 

rate of photosynthesis for the sunlit and shaded fractions of the canopy are calculated as 

the minimum of either the electron transport limited or Rubisco limited rates. It is 
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Figure 6.16 Light response of gross canopy photosynthesis (Ac) measured with 

the tent (-o-) compared with predictions from the sun/shade model (- - -) and 

multi-layer (-) model of canopy photosynthesis. Modelled electron-transport <A; 
- - -) and rubisco-limited (AV' ······) rates of photosynthesis are shown for the sunlit 

and shaded fractions of the canopy. Data are of a wheat canopy of cultivar 

Matong on 25-0ct measured by the tent. 
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apparent in figure 6.16 that the shaded fraction of the canopy is always electron transport 

limited (ie. Ajsh < Avsh) and that the sunlit leaves are usually Rubisco-limited (Avsun < 

Ajsun), except when the absorbed light is very low. The fraction of leaves in the sunlit 

fraction increased from 0% at low light to 56% at the maximum solar elevation. 

The light response of the sunlit/shade model deviated from the multi-layer model only 

at intermediate light levels (200-400 µmol PAR absorbed .m-2.s-1) and the deviation was 

consistently observed with other data sets not shown. The discrepancy between the 

sunlit/shade model and the multi-layer model occurred near the point at which the sunlit 

fraction changed from electron transport limited to Rubisco limited photosynthesis. At 

this light intensity representation of photosynthesis by the sunlit fraction as limited either 

by electron transport or by Rubisco involves a simple averaging of a continuum of light 

intensities caused by a range of leaf angles. As light intensity increases the proportion of 

leaves in the sunlit leaf fraction that are not Rubisco limited decreases and so this 

simplification improves until the associated errors are not detectable. These errors have 

the same cause as those associated with the simplifications in the big leaf model 

representation of canopy photosynthesis, but are have much less impact on the accuracy 

of the sun/shade model than the big leaf model. 
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6.4. Further Discussion & Conclusions 

Models of Canopy Photosynthesis 

The sun/shade model of canopy photosynthesis presented in this chapter gave 

predictions of canopy photosynthesis that closely matched simulations from a multi-layer 

model, but with far fewer calculations. The model was robust over a range of canopy 

leaf area and environmental variables. Differences between predictions of the sun/shade 

model, the multi-layer model and flux measurements were well within the errors of any 

canopy flux measurement technique and within the accuracy of parameter determination 

given the stochastic nature of leaf photosynthetic capacity and other parameters. The 

simplicity of the sun/shade model should make it attractive for incorporation into models 

of crop growth, global carbon cycling and of other higher level processes. 

A big leaf model, similar to those proposed by Sellers (1992) and Amthor (1994), 

was found to be less accurate than the sun/shade model. Approximations, implicit in the 

big leaf model, were found to cause distortions in the modelled response of canopy 

photosynthesis to light compared with the multi-layer model. Fitting the curvature factor 

in the big leaf model did not correct all the discrepancies. The value of the curvature 

factor required to reproduce the response of canopy photosynthesis to light, as modelled 

by the multi-layer model, was found to vary with canopy leaf area index, and to a lesser 

extent, with leaf nitrogen content. Errors associated with using a fixed value of the 

curvature factor (for Le = 2) were 25% of daily gross canopy photosynthesis at a leaf 

area of 4 and even greater at higher leaf areas. These errors are unacceptably large, 

particularly when canopy leaf area is varying, such as in crop growth models or models 

that predict the response of vegetation to climate change. 

Optimal Distribution of Leaf Nitrogen 

Models that use average light in canopy layers to determine the optimal distribution 

of photosynthetic capacity to maximise canopy photosynthesis are flawed in their often 

implicit assumptions that the time-averaged light profile is identical to the instantaneous 

profiles of absorbed light. Leaf nitrogen is, indeed, often distributed such that it follows 

the profile of time averaged absorbed light, but it does not mean that it also resembles 

the instantaneous profile of absorbed. The flawed logic results in misleading conclusions 

about the optimal distribution of leaf nitrogen to maximise canopy photosynthesis. 
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Summary 

Understanding the dynamics of C02 fluxes from canopies is a vital component of 

assessing water-use efficiency and carbon cycling of natural ecosystems. Scaling 

photosynthesis from leaves to canopies allows knowledge from the leaf scale to be 

applied at the canopy scale and is facilitated by use of mechanistic models of 

photosynthesis. The objective of this chapter is to test a simple two-layered model of 

canopy photosynthesis applied to sunlit and shaded leaves, that is a scaled version of a 

biochemically based model of leaf photosynthesis, with field data. 

Canopy fluxes were measured with ventilated chambers and Bowen ratio systems 

over large paddocks of wheat with two cultivars of contrasting water-use efficiency. 

Conc1.1:rrent measurements of leaf gas exchange were used to determine the leaf 

photosynthetic capacity. Photosynthetic capacity of the canopy was estimated from the 

canopy model. 

Diurnal decline in photosynthetic capacity, and recovery overnight, was observed at 

both the leaf and canopy scales. This was attributed to increasing water stress during the 

day, because a regression based on cumulative evaporation was able to explain much (r2 

= 0.87) of the diurnal variation of photosynthetic capacity of leaves and the canopy. 

Sun/shade model predictions reproduced the diurnal response of canopy photosynthesis 

to absorbed light, although the model was not accurate in predicting the absolute flux 

due to the high variability of leaf data between days which was used to parameterise the 

canopy model. Canopy and soil respiration was typically 20 to 30% of daily gross 

canopy photosynthesis, but rose to 50% on days with air temperature over 30°C. 

The sun/shade model of canopy photosynthesis allowed incorporation of within­

canopy profiles of photosynthetic capacity and accurately reproduced the response of 

canopy photosynthesis to absorbed light without the use of any empirical factors. This 

model was simpler than a multi-layered model and avoided the assumptions required in 

big-leaf models of canopy photosynthesis. These features make this model of canopy 

photosynthesis suitable for assessing the effect of plant physiological traits on canopy 

water-use efficiency and the dynamics of carbon cycling in natural ecosystems. 
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7 .1. Introduction 

Greater crop yields through improved water-use efficiency (WUE) have come closer 

to being realised through the development of carbon isotope discrimination (.1) as a tool 

to quickly assess large numbers of breeding lines (Hall et al., 1994). However, the 

relationship between .1 and WUE has not been consistent between experiments in pots 

and field trials (Condon et al., 1990). Effective use of .1 requires an improved 

understanding of the scaling up of physiological processes from leaves to canopies. 

Scaling up physiological processes is also receiving attention, from an ecological 

perspective, to improve the understanding of carbon and water dynamics of vegetation 

and their response to climate change (Carlson, 1991; Ehleringer & Field, 1993; Jarvis, 

1995). 

Mathematical models are an integral part of scaling physiological processes as they 

synthesise the non-linear biological responses to the environment and facilitate analysis of 

fluxes in unregulated field conditions. If models are based on a mechanistic 

representation of physical processes then the value of parameters can be examined in a 

biological context, an attribute which empirical models do not have. Models that can be 

applied at adjacent spatial scales in the same form (scaling models) allow insight gained 

from one level to be applied at the next higher level (Norman, 1993). Although there are 

considerable benefits in using scaling models, it is not always possible to find scaling 

models of processes with matching parameters; each case must be examined 

independently (Raupach, 1995). Like all models, scaling models must be evaluated 

against experimental data and found to adequately describe the processes, with realistic 

parameters values. Validated scaling models can be used to make predictions of canopy 

fluxes, using leaf level data. Understanding the variation of parameters at leaf and 

canopy scales can lead to better predictions of canopy fluxes. 

A model of stomatal conductance (Ball et al., 1987; Leuning, 1990; Collatz et al., 

1991; Leuning, 1995) that is based on the correlation of stomatal conductance with 

photosynthesis (Wong et al., 1979) was verified at the leaf (Chapter Four) and canopy 

scales (Chapter Five). A biochemically based model of leaf photosynthesis (Farquhar et 

al., 1980) is now widely accepted and has been tested in controlled environment 

experiments (Farquhar & von Caemmerer, 1982; Harley et al., 1992), but less often with 

field data. These leaf-scale models have been incorporated into multi-layer models of 

canopy photosynthesis and transpiration (Reynolds et al., 1992; McMurtrie et al., 1992; 
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Leuning et al., 1995), but their validity for use in scaling from leaves to canopies, with 

both in situ leaf measurements and canopy flux data, has been demonstrated in only a 

few cases (Baldocchi & Harley, 1995). 

Simple big-leaf models of canopy photosynthesis, based on the distribution of 

photosynthetic capacity in proportion to the distribution of absorbed light offer easier 

parameterisation (Sellers et al., 1992; Amthor, 1994). However, single-layer models of 

canopy photosynthesis have been shown to be inaccurate due to averaging of the non­

linear response of leaf photosynthesis to absorbed light (Sinclair et al., 1976; Norman, 

1980). These inaccuracies were also shown to exist in big-leaf models due to the 

mistaken assumption that the instantaneous and time-averaged profiles of absorbed 

irradiance in canopies are similar (Chapter Six). Models that treat the canopy as two­

layers, sunlit and shaded leaves, overcome the flaws of big-leaf models (Sinclair et al., 

1976; Norman, 1980), but have not included spatial variation of leaf photosynthetic 

capacity in the canopy (Boote & Loomis, 1991). In Chapter Six I presented a sun/shade 

model of canopy photosynthesis that incorporates variation of leaf photosynthetic 

capacity in the canopy and uses the preferred, Farquhar et al., model of leaf 

photosynthesis. 

A field experiment was conducted to examine the scaling-up of photosynthesis and 

water-use efficiency from leaves to canopies. Two cultivars of wheat, Matong. and 

Quarrion, chosen for their contrasting water-use efficiency, due primarily to differences 

in stomatal conductance, were grown in large adjacent paddocks. Concurrent 

measurements of gas exchange of leaves were used to parameterise the model of leaf 

photosynthesis. Canopy flux measurements were used to test the scaling up of 

photosynthesis by the sun/shade canopy model. 

The main objectives of this chapter are to compare photosynthetic model parameters 

at leaf and canopy scales and to test the sun/shade model of canopy photosynthesis 

against field data. The measured responses of canopy and soil respiration to temperature 

were extrapolated to allow comparison of model predictions of gross canopy 

photosynthesis with net canopy C02 flux data. The distribution of photosynthetic 

capacity in relation to the distribution of absorbed light in the canopies, is examined. 

233 



Chapter Seven 

7.2. Model 

Details of the sun/shade model of canopy photosynthesis were presented in the 

previous chapter (Six). The essential equations of the model are used to calculate 1) the 

sunlit proportion of the canopy leaf area, 2) the light absorbed by the sunlit and shaded 

portions of the canopy, 3) the photosynthetic capacity of the sunlit and shaded portions 

of the canopy, and 4) photosynthesis with the model of Farquhar et al., (1980). All 

photosynthetic parameters were adjusted for temperature as indicated in the previous 

chapter. 

7.2.1. Photosynthetic Capacity of Leaves 

Photosynthetic Rubisco capacity of leaves (V1) was determined from light saturated 

rates of photosynthesis and a rearrangement of the Farquhar et al., ( 1980) model of leaf 

photosynthesis, 

v; = A ...:....(P.;.__; +_K--''X_;...r_+_K__;...') 
I I (p, -rxr. +K'), 

p.l) 

where the variables were defined in the previous chapter. Use of r, the C02 

compensation point, in the above equation allows for leaf respiration in the light (Rd) to 

vary in proportion to v[. 

Farquhar et al. (1980), described the electron transport potential (Jm) as increasing 

with temperature up to 30°C and then decreasing with further increases in temperature. 

At high temperatures, photosynthesis may be limited by RuBP regeneration rather than 

Rubisco despite high levels of absorbed light (2000 µmol.m-2.s-I) (Farquhar et al., 1980). 

Electron transport (J) was calculated from a rearrangement of the model of leaf 

photosynthesis, 

(7.2) 

where Rd was calculated as 0;0Q89V1 from eq. 7.1. Jm was calculated from the electron 

transport light response curve (Farquhar & Wong, 1984) as 
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(7.3) 

and l 1e is PAR usefully absorbed by Photosystem II per unit leaf area as given in the 

previous chapter (li(l-/)/2). Jm was converted to photosynthetic Rubisco capacity 

assuming a fixed ratio of 2.1 for Jm:V1 at 25 °C (Makino et al., 1992; Wullschleger, 

1993). At other temperatures the ratio varies with the sensitivities of Jm and V1 to 

temperature. 

The Farquhar et al. ( 1980) model expresses leaf photosynthesis as the minimum of 

the Rubisco and RuBP limited rates of photosynthesis. When this model is rearranged 

for interpretation of data, as expressed above, the true photosynthetic capacity of leaves 

is determined from the maximum of the Rubisco and RuBP regeneration limited rates of 

photosynthesis. In practice V1 was calculated from measurements of leaf photosynthesis 

using eq. 7.1, Jm was calculated from eqs. 7.2 & 7.3, both were adjusted to equivalent 

values at 25 °C using their temperature dependencies (Chapter Six), Jm was converted to 

units of Rubisco capacity, by the ratio of 2.1, and the apparent photosynthetic capacity 

taken as the maximum capacity from either the Rubisco or electron transport limited 

rates. 

7.2.2. Photosynthetic Capacity of Canopies 

The photosynthetic capacity of canopies was assessed using the sun/shade model of 

canopy photosynthesis. A uniform (spherical) leaf angle distribution was assumed, so 

that the fraction of the canopy that is sunlit ifsun) is dependent only on leaf area and solar 

elevation (~), which was calculated using equations presented in the previous chapter. 

Photosynthesis of the shaded portion of the canopy (Acsh) was assumed to be light 

limited (RuBP regeneration limited), as indicated by the sun/shade model (previous 

chapter). Photosynthesis at low levels of absorbed light is relatively insensitive to 

photosynthetic capacity (Mooney et al., 1981; Field, 1983; Pons et al., 1989; Schieving 

et al., 1992; Sadras et al., 1993), allowing Acsh to be determined from the equations of 

absorbed light and an approximate estimate of photosynthetic capacity of the shaded 

portion of the canopy (Vcsh). 

Photosynthesis of the sunlit portion of the canopy is Rubisco limited (light saturated) 

for most of the day (previous chapter). As with the leaf data, canopy photosynthetic 
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capacity of the sunlit portion (Vcsun) was calculated from a rearrangement of the 

photosynthesis model (eq. 7.1), by substituting for A1 with Acsun =Ac -Acsh and using the 

Ball-Berry/Leuning stomatal model (Chapter Five) to determine conductance of the 

sunlit portion of the canopy and hence estimate P;· Total canopy photosynthetic capacity 

(VJ was calculated from vcSun and used to determine a better estimate of vcSh' Further 

iterations of the calculations with the new estimate of Vcsh changed the value of Ve 

marginally. 

7.2.3. Daily absorbed light profile 

Big-leaf models implicitly assume that leaf photosynthetic capacity or leaf nitrogen is 

distributed in the canopy in proportion to the time-averaged (daily) absorbed irradiance. 

The daily irradiance absorbed at each level in the canopy, llday(L)• was calculated by 

integration of the instantaneous absorbed irradiance from sunrise to sunset with a multi­

layer model (Chapter Six), 

I (L) - i'sunstt I (L)d 
/day - I t 

tsU11rise 

(7.4) 

There is no simple analytical solution to this integral, so it was calculated numerically. 

The profile of daily absorbed irradiance varies through the year (figure 7 .1 ). Solutions to 

the distribution of daily absorbed light were simplified by assuming an exponential 

extinction of net irradiance (ie. adjusted for canopy reflection and including the scattered 

components). If k; is the extinction coefficient of daily irradiance in the canopy, then the 

absorbed light profile is defined relative to the daily irradiance at the top of the canopy, 

lday(O), by the equation, 
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Figure 7.1 Left: Numerical solutions of the daily integral of absorbed light, /1(LJ• 

relative to incident light at the top of the canopy, /(OJ, (eq. 7.4). Right Residuals, 

relative to /(OJ, from fitting the exponential approximation (eq. 7.5) to the 

distribution of daily absorbed light with values of the extinction coefficient 

calculated from eq. 7.6. 

(7.5) 

where Ida/O) is the daily irradiance incident at the of the canopy, calculated as the 

integral from sunrise to sunset of /(0). This equation gives approximations with 

deviations of less than 2% of incident light at the top of the canopy, compared to the 

numerical solutions of the daily absorbed light profile (figure 7.1). 

The extinction coefficient, ki, varies through the year with the maximum solar 

elevation of each day, calculated from latitude (A) and solar declination (8) as 7t/2-18-A.I 

(figure 7 .2). When ki is plotted against the sine of the maximum daily solar elevation, 

sin~max• (figure 7 .3) it is apparent that most of the variation can be accounted for by the 

equation (cf. definition of kb = 0.5/sin~) 

k; = 0.598/ (sin ~max )°"147 
• (7.6) 
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Figure 7.2 Extinction coefficient of daily absorbed irradiance, k; (open symbols), 

and maximum daily solar elevation, l3max (solid symbols), for days from winter 

solstice (173) to summer solstice (359) for the latitude 35°3.5' S of Wagga Wagga. 

Given that leaves exist at discrete intervals, it was necessary to calculate light 

absorbed by a layer of leaves for comparisons of absorbed light with leaf photosynthetic 

capacity. The light absorbed by a layer of leaves depends on their area, which was 

determined by direct measurements of leaf dimensions and the number of heads of wheat 

per m2 (Table 7.1). The daily absorbed light of a layer relative to available light at the 

top of the canopy was calculated as the integral of eq. 7.5, 

l1t1a}4J/(It1ai_o)(l-pJ) = J~ k; exp(-k;4')dL /(4
1 
-4J 

= [ exp(-k;LJ-exp(-k;Lzo)]/(4
1 
-4J 

(7.7) 

238 



.::.i.-

Scaling Up Photosynthesis 

1.0 .-------------------. 
• Day 
173. 

•• 0.9 - ~-

0.8 -

0.7 -

0.6 -

.. 
2$ . 

•• 2136· •. 

0.5 ....._ __ ......__ 1 _ __,_1 __ _.1 ___ .__1 _ __, 

0.5 0.6 0.7 0.8 0.9 1.0 

sinB 
max 

Figure 7.3 Daily light absorption extinction coefficient, k;, plotted against sine of 

maximum solar elevation for various days of the year for Wagga Wagga. 
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7 .3. Experimental Methods 

Field experiments were conducted as part of a larger project to assess the scaling of 

water-use efficiency (WUE) from small plots to paddocks. Details were given in 

Chapter Two. A brief outline is reiterated here. 

Two cultivars of wheat, Matong and Quarrion, were grown in large (5 ha) adjacent 

plots. Photosynthesis was measured on individual leaves, sections of canopy and the 

whole paddock on several days prior to anthesis, near anthesis and post anthesis. Data 

from 1990 were used to test the sun/shade model of canopy photosynthesis outlined in 

the preceding section. 

Leaf nitrogen distribution in the canopy was determined from samples of leaves (flag 

and penultimate) from both canopies on two days (25 and 30 October). The samples 

were dried, finely ground and analysed by elemental analysis (Carlo Erba 1108). The 

same samples were analysed for the ratio of 13C: 12C in a stable isotope ratio mass 

spectrometer (VG, Isomass). 

Soil C02 flux measurements were made using a small portable chamber attached to 

the Li-Cor 6200 (see chapter 3 for more details). Data were collected on several days 

coinciding with other flux measurements. 

Soil respiration is a temperature dependent process. Soil temperature CT.v.z.r) was not 

measured, but was estimated from a simple model based on heat diffusion in soil 

(Campbell, 1977). Diurnal soil temperature variation has an increasing phase lag and a 

decreasing amplitude compared to air temperature with depth in the soil, 

I:.z,1 = ~.o +exp( - z/ D )( 7'..o,1-z/(27tD) - ~.o), (7.8) 

where ~ 0 is the average surface temperature (over 24 hours), z is the depth in the soil 
' 

(0.05 m), D (= (2Klro)lf2) is the damping depth, K is the thermal diffusivity of the soil 

(8x10-7 m2.s-l) (Baver et al., 1972), ro is the angular frequency of temperature oscillation 

(2rri't s-1), 'tis the period of oscillation (86400 s), z/(21tD) is the time lag of temperature 

variation in the soil compared to the surface and T.v.o,r-l/(2rtDJ is the surface temperature at 

that time. Surface temperature was not measured, but was assumed equal to air 

temperature since radiation penetration through the canopy to the soil was 10-30 % of 

total radiation. 
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The measured canopy C02 flux included respiration from stems, heads, roots and 

soil. Estimated respiration was added to the measured C02 flux to calculate gross 

canopy photosynthesis, thus allowing direct comparison with modelled canopy 

photosynthesis. Canopy respiration was estimated from C02 flux measurements at night. 

Data from several nights were analysed to obtain a temperature response function, which 

was used to extrapolate the respiration measurements to daytime with higher 

temperatures. 

As with the tent C02 flux measurements, canopy respiration was added to the Bowen 

ratio C02 fluxes to allow direct comparison with the modelled gross canopy 

photosynthesis. Small gradients at night prevented C02 flux measurements at night with 

the Bowen ratio system, so estimates of canopy respiration from the tent were used. 

However, chamber over-pressure is known to suppress soil C02 fluxes (Kanemasu et al., 

1974). The extent of soil C02 flux suppression in the tent was assessed by using an 

additional fan to suck air as well as blowing, removing the over pressure, and by only 

sucking air. It was estimated that soil C02 fluxes were reduced by 80% in the tent. 

Thus in addition to the tent measured canopy respiration an additional 80% of the 

independently measured soil flux was added to the Bowen ratio C02 flux data to obtain 

gross canopy photosynthesis. 
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7.4. Results 

7.4.1. Canopy nitrogen and leaf area distribution 

Leaf nitrogen distribution in the canopy was determined on two days shortly after 

anthesis (25 and 30 October) (Table 7.1). Flag leaves were larger (26%), had higher 

(37%) nitrogen content and lower (15%) specific leaf area (SLA) than penultimate leaves 

in both canopies. Leaves of the Matong canopy were larger (43%), had lower nitrogen 

content (9%) and similar SLA to those of Quarrion. 

Table 7.1 Leaf size, specific leaf area (SLA) and leaf nitrogen (N1) of wheat 

cultivars Matong and Quarrion on 25 and 30 October. The number of heads per 

m2 was determined from the final harvest and assumed equal to the number of 

stems. Sample size: n = 8 on 25-0ct and n = 11 on 30-0ct. Standard errors in 

parenthesis. Samples for elemental N analysis were two leaves combined. 

Cul ti var No. of Date Leaf Ar~a SLA Ni 
Heads (cm2.leaf·1) (cmz.~-1) (mmol.m-2) 

Matong 270 25-0ctflag 45 (2.7) 181 (5.6) 119 (5.1) 

penultimate 40 (3.3) 214 (8.5) 91 (3.4) 

30-0ctflag 43 (2.3) 187 (6.2) 115 (10.9) 

penultimate 28 (2.4) 211 (6.7) 88 (10.7) 

Quarrion 342 25-0ctflag 33 (2.9) 187 (4.5) 130 (7.2) 

penultimate 31 (2.8) 226 (10.2) 89 (5.5) 

30-0ctflag 26 (2.0) 179 (4.6) 137 (3.4) 

~nultimate 20 (L6) 212 (7.3) 96 (4.7) 

Over the five days between measurements there was a greater reduction in the green 

leaf area of penultimate leaves ( 49%) than flag leaves ( 13 % ) and little change in SLA or 

nitrogen content per unit leaf area. Leaf area of both canopies decreased by 26% over 

this period. Flag leaves as a proportion of the total canopy increased from 53% to 60% 

in Matong, and from 51 % to 57% in Quarrion. 

These data were used to parameterise the model of leaf nitrogen distribution (Hirose 

& Werger, 1987a) for the two canopies (figure 7.4). A single value of N
0 

and kn for each 

crop was fitted to data on both days. The profiles of leaf nitrogen were steeper in 
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Quarrion than Matong as indicated by a higher nitrogen distribution coefficient, kn, and a 

higher value of N
0

• Narrower leaves, resulting in less leaf area in the flag leaf layer, and a 

lower leaf area index in Quarrion, compared to Matong, contributed to the steeper 

distribution of leaf nitrogen, as the nitrogen contents of the penultimate leaves of both 

crops were similar. 

Leaf N (mmol.m-.:) 
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Figure 7.4 Distribution of leaf nitrogen for wheat canopies of cultivars Matong 

(solid symbols) and Quarrion (open symbols) measured on 25-0ct (circles) and 

30-0ct (triangles). Lines are the exponential N distribution model (Hirose & 

Werger, 1987a), with the parameters as indicated. The data points represent the 

average leaf nitrogen of flag and penultimate leaves. Standard errors are shown 

as error bars. 

Leaf nitrogen was converted to leaf photosynthetic capacity assuming a linear 

relationship (see Chapter Six) and the distribution of V1 in the canopies was plotted 

against the modelled distribution of daily absorbed light (figure 7.5). Profiles of relative 

daily absorbed light and relative leaf photosynthetic capacity were plotted, to account for 

the changes in the absolute canopy photosynthetic capacity and total absorbed light due 

to changes in canopy leaf area and solar position. 

Profiles of photosynthetic capacity in the Matong canopy were not as steep as the 

profiles of daily absorbed light, whereas the profiles of photosynthetic capacity and light 

in the Quarrion canopy were closely matched. The relative distribution of photosynthetic 

capacity became steeper in both canopies as the crops matured, which suggests that the 
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distribution of photosynthetic may have deviated even further from the relative 

distribution of daily absorbed light earlier in the season, although no measurements in 

this canopy were available. Analysis of data from other wheat canopies (van 

Herwaarden, 1995) shows that as wheat crops mature leaf nitrogen (mmol.m-2) is 

removed from all leaves uniformly, so that as leaf area· of the canopy decreases the 

relative distribution profile becomes steeper and more closely matched to the relative 

profile of daily absorbed light. 
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Figure 7.5 Relative leaf nitrogen distribution plotted against the relative 

distribution of daily absorbed light. Also shown is the 1 :1 line of a match in the 

distribution of leaf photosynthetic capacity and daily absorbed light. Error bars are 

standard errors. 

7.4.2. Soil Respiration 

Measured soil respiration (Rs) was characterised by high spatial variability 

(coefficient of variation= 0.3) (figure 7.6). The increase in Rs appeared to be related to 

soil temperature (Ts), since it reached a maximum later than air temperature. However, 

an Arrhenius plot of ln(Rs) against l!RT.~.o.os showed no significant variation in Rs due to 
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Ts. Many observations of Rs have been shown to vary between days with Ts (Lloyd & 

Taylor, 1994). Measurement techniques have limited resolution of diurnal trends 

(Schlesinger, 1977), although eddy correlation measurements show that Rs does respond 

to diurnal variation of Ts (Baldocchi et al., 1986). From another study of soil respiration 

under wheat crops (unpublished data) I determined that Rs responds to temperature with 

an activation energy of 53 kJ.mol-1• Since most measurements of Rs were made between 

10:00 and 16:00, there was little variation in T.v within a day. Measurements at other 

times (night) may have increased the temperature range and allowed a temperature 

response to be observed. 
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Figure 7.6 Soil respiration measured beneath the Matong (o} and Quarrion (6) 

canopies, with a chamber attached to a Li-Cor 6200 collected on 25-0ct and the 

combined average. 

Variation in soil respiration between days was explained by variation in relative soil 

water content (W). The temperature component of variation in Rs was removed by 

calculating soil respiration at 10°C (RsooJ), using the assumed temperature response. A 

linear regression of the natural log of Rs(JO) with the natural log of W accounted for 61 % 

of the variation (standard errors of coefficients shown in parentheses), 
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In Rs(IO) = 1. 50(o.os) + 1. 77(0.10) In W, (7.9) 

where Rs(IO) is in µmol.m-2.s-1 and Wis a fraction. Since data for W were available only 

on a fortnightly basis, the regression could not account for any diurnal variation. Soil 

respiration was extrapolated from the measured soil respiration (Table 7 .2) or the 

regression with available soil water content (eq. 7.9) when measurements were not 

available and the assumed temperature response. 

7.4.3. 

Table 7.2 Average soil respiration adjusted to 10°C, R5c1ai 
(µmol C02.m·2.s-1). 

Date Matong Quarrion 
05-Sep 7.05 5.32 
18-0ct 1.17 1.09 
24-0ct 2.60 3.45 
25-0ct 2.54 2.61 
30-0ct 0.69 0.71 
31-0ct 0.53 0.52 
01-Nov 0.92 1.21 

Canopy Respiration 

As light levels decreased at sunset, the canopy C02 flux became negative (ie. 

respiration dominated), reaching its most negative just after complete darkness. The 

C02 flux approached zero through the night as the temperature dropped, reaching a 

minimum before sunrise just prior to the minimum temperature. As light levels increased 

at sunrise the C02 flux increased and became positive. Low wind speeds during the 

night allowed [C02] in the canopy to increase to 500 ppm. Large changes in [C02] in 

each puff of wind, made flux measurements based on a differential IRGA very variable 

on some nights. 
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Figure 7.7 Hourly averages of night C02 fluxes (relative to the rate at 10°C) from 

the Matong wheat canopy of five separate nights that were used to determine the 

temperature response of canopy respiration. Data were obtained with a ventilated 

chamber. The line is the function that was fitted on an Arrhenius plot, with an 

activation energy of 57.1 (se = 2.7) kJ.mo1-1• 

Canopy (including the unsuppressed soil component) respiration (Re) was estimated 

from tent C02 fluxes at night. Data from five nights were used on an Arrhenius plot of 

the temperature response (figure 7.7). The data were fitted concurrently so that data 

from each night were allowed a separate intercept and a common slope. An activation 

Table 7.3 Canopy respiration rate, including the 

unsuppressed soil respiration, adjusted to 1 O °C, Rcrtor 

Date 
12-13/10 
17-18/10 
24-25/10 
25-26/10 
30-31/10 
31/10-1111 
1-2111 

Matong 
2.27 
2.82 
2.45 
1.71 
1.77 
1.77 
2.01 
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2.14 
2.34 
1.81 
2.27 
2.10 
2.26 
1.46 
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energy of 57 .1 kJ.mol-1 was calculated from the slope, which was very close to 58 

kJ.mol-1 reported by Baldocchi (1994b) in a wheat crop. Canopy respiration rate at 10°, 

Rc(lo)' was calculated from Arrhenius plots on all nights using the fitted activation energy 

for both canopies (Table 7.3). 

Brooks & Farquhar ( 1985) and Kirschbaum & Farquhar ( 1987) observed decreases 

in respiration of leaves in light compared with dark respiration, but Azc6n-Bieto & 

Osmond (1983) did not, although reviews by Graham (1980) and Kromer (1995) give 

several reasons why the decrease could occur. The magnitude and existence of the effect 

remains elusive, but nevertheless I have assumed that canopy respiration during the day 

was 85% of the rate at night, since leaves were only 10% of crop biomass (see Chapter 

Three) and the specific respiration rate of leaves is three times greater than that of spikes 

and four times greater than that of stems (McCullough & Hunt, 1993). Modelled canopy 

respiration (figure 7.8) was considerably greater during the day than at night since air 

temperatures were higher. 
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Figure 7.8 Modelled canopy respiration (-) extrapolated from measurements of 

canopy C02 flux at night (-- o--) and the air temperature(······). Data are the C02 

flux measurements of the Matong canopy on the 25-0ct. Solid bars at the bottom 

indicate night. 

248 



Scaling Up Photosynthesis 

7.4.4. Leaf photosynthetic capacity 

Measurements of leaf photosynthesis (A1) were made on ten separate days in 1990. 

Data of photosynthetic Rubisco capacity of leaves (V1) on a day just after anthesis and 

the following week are presented in figure 7.9. 

A1 declined during the day, despite an increase in intercellular C02 partial pressure 

(p), so that calculated V1 declined during the day, even after adjusting for the effects of 
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Figure 7.9 Leaf photosynthesis (A,), ratio of intercellular to atmospheric C02 

partial pressures (p/p
8
), leaf temperature (T1) and photosynthetic (Rubisco) 

capacity adjusted to 25°C (\I/) of flag leaves in canopies of Matong (-o-) and 

Quarrion (-..-) on 25-0ct (left) and 30-0ct (right). Standard errors are shown as 

error bars. Each point is the mean of measurements on 5 leaves. 
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temperature. The decline in V1 and A1 during each day became more pronounced as the 

season progressed. 

High temperatures on 30-0ctober reduced the modelled rate of electron transport so 

that apparent photosynthetic capacity of the leaves was calculated from the maximum of 

the RuBP-regeneration limited rate and the Rubisco limited rate of photosynthesis and 

converted to units of Rubisco capacity assuming a constant ratio of Jm:Vm = 2.1 (at 25 

°C) (figure 7 .10), as previously explained. Photosynthetic capacity was calculated from 

the RuBP regeneration equations (eqs. 7.2 & 7.3), yielding results which were greater 

than the photosynthetic capacities calculated from the Rubisco equation ( eq. 7 .1) for all 

measurements after 10:30, when leaf temperature rose above 36°C in both Matong and 

Quarrion. 
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Figure 7.10 Photosynthetic Rubisco capacity of flag leaves of Matong (left panel) 

and Quarrion (right panel), calculated assuming Rubisco limited photosynthesis 

(Rubisco, open symbols) or RuBP regeneration limited photosynthesis (RuBP, 

solid symbols) on 30 October. 

The diurnal decline in apparent photosynthetic capacity was less severe when the 

effect of high temperature on RuBP regeneration limited photosynthesis was considered, 

compared to the decline in the apparent photosynthetic capacity derived from the 

Rubisco equation only. On other days temperatures were not so high so apparent 
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photosynthetic capacity was calculated from only the equations describing Rubisco 

limited photosynthesis. 

Mean V1 for all days are plotted in figure 7 .11. There were significant changes in V1 

on successive days that did not follow the estimated decline in leaf nitrogen content, but 

were associated with variation in temperature, relative soil water content and senescence 

of the canopies (figure 7 .12). V1 was similar in both canopies prior to an thesis, but was 

higher in Quarrion than Matong post-anthesis (figure 7.11). V1 of leaves in both canopies 

declined as the season progressed, the decline being more rapid in the Matong canopy 

than Quarrion. 
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Figure 7.11 Left panet. Average apparent Rubisco capacity (V,) of fully sunlit flag 

leaves in canopies of Matong (-o-) and Quarrion (-e-) on ten days near anthesis. 

Right panet. Rubisco capacity of flag leaves calculated by a regression with 

relative soil water availability, leaf temperature and accumulated canopy 

evaporation at 10:00 (eq. 7.10). Standard errors are shown as error bars. 

The recovery of apparent photosynthetic capacity each morning (figure 7.9) suggests 

that the decline in apparent photosynthetic capacity during each day was not associated 

with changes in Rubisco capacity but rather some temporary down regulation of 

photosynthesis. Gunasekera and Berkowitz (1993) found no effect of water stress on 

Rubisco activity but suggested that some step in RuBP regeneration may have been 

limiting (other than temperature effects). If this phenomenon were due to water stress, 
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then the measured leaves, which were perpendicular to the beam direction at the top of 

the canopy, were probably more stressed than other leaves. Thus these leaf 

measurements may not be representative of the diurnal changes of leaf photosynthetic 

capacity of the entire canopy. 
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Figure 7.12 Canopy leaf area (Lr), left panel (circles), average leaf temperature 

(T'p (squares) and relative soil water availability (W), right panel (triangles), for 

canopies of Matong (open symbols) and Quarrion (filled symbols) during the 

period of leaf photosynthesis measurements. 

The changes in photosynthetic Rubisco capacity may have been caused by declining 

leaf water potential, but it was not measured. Instead the relative soil water content (W) 

and the daily accumulated evaporation from the canopy (T.Ec) were used as indicators of 

plant water status. A multiple linear regression of V1, with cultivar as a factor, accounted 

for much of the variation (Table 7.4), 

(7.10) 

where a, b and c are the regression intercept and coefficients. Separate values of a and b 

were determined for each cultivar and a common coefficient c for both cultivars. 

Relative soil water content accounted for variation in V1 between days, while '1:.Ec 

accounted for the decline in V1 during the day, with greater sensitivity on hotter days. 
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The maximum values of apparent photosynthetic capacity, observed each morning 

are a more appropriate parameter for determining canopy photosynthetic capacity. Since 

morning measurements were not taken on all days the regression (eq. 7.10) was used to 

estimate leaf photosynthetic capacity at mid-morning (10:00). Estimated mid-morning 

values of leaf photosynthetic capacity were less variable than the earliest measurements 

on each day (at different times) and showed a decline consistent with canopy maturity 

and senescence (figure 7 .11). 

Table 7.4 Coefficients of the regression analysis of variation in Rubisco 

photosynthetic capacity of leaves ( \J/(25), µmol.m-2.s-1) in Matong and 

Quarrion; a, constant, b, coefficient of relative soil water availability (W') and c, 
coefficient of leaf temperature (T1, °C) and accumulated canopy evaporation 

(I.Ee, mol.day-1) interaction. Standard errors of coefficients in parenthesis. 

Crop a b c r2 

Matong 30 (8) 243 (19) 
-0.0087 (0.0006) 0.87 

Quarrion 107 (14) 89 (29) 
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7.4.5. Canopy Photosynthetic Capacity 

Canopy photosynthetic capacity (V) was calculated using the sun/shade model as 

previously described. Ve was greater in Quarrion than Matong and decreased during the 

day (figure 7.13), as was also observed at the leaf scale (figure 7.9). The decrease in Ve 

during the day was not as marked as at the leaf scale. Changes in Ve before 9:00 and 

after 15:00 are probably not realistic because the calculations to determine the fraction of 

sunlit leaf area are not accurate at low solar elevations (Goudriaan, 1977) and the 

assumption of Rubisco limited photosynthesis is not valid. The regression used to 

describe the diurnal variation in leaf photosynthetic capacity ( eq. 7 .10) also described the 

decrease of Ve during the day, although the coefficient was lower (c = 0.0035) (data not 

shown). 
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Figure 7.13 Photosynthetic Rubisco capacity of the Matong (o) and Quarrion (•) 

canopies on 25-0ct and 30-0ct (left and right panels), derived from C02 flux data, 

measured with the tents, and the sun/shade model of canopy photosynthesis. Also 

shown as lines are the modelled canopy photosynthetic capacities predicted by the 

regression derived from leaf data (c = -0.0087) (eq. 7.10). 
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7.4.6. Comparison of Model with Data 

7.4.6.1. Instantaneous Photosynthesis 

Predictions of canopy photosynthesis by the sun/shade model, using photosynthetic 

capacity derived from the leaf measurements and the regression (eq. 7.10), were 

compared with tent measured C02 fluxes on nine days and with the Bowen ratio flux 

Figure 7.14 Comparison of modelled canopy photosynthesis (-) with gross 

canopy photosynthesis (··o··) calculated from measured net C02 fluxes by the 
tents (Li) on 13-0ct (top), 25-0ct (middle) and 30-0ct (bottom) for canopies of 

Matong (left) and Quarrion (right). Model parameters were derived from leaf 

photosynthesis data measured concurrently with the canopy data. 
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data on twelve days. Data from three days are shown representing periods prior to 

anthesis (13-0ct), near anthesis (25-0ct) and post anthesis (30-0ct) (figures 7.14 & 

7.15). These measurements covered a range of temperatures (mean daily Ta= 15-35°C) 

and canopy leaf areas (Le = 3.5 - 1.0). 

On 13-0ct temperature was low (mean daily Ta = 15°C) and the calculated canopy 

and soil respiration was a small component of net canopy C02 flux so that gross canopy 

photosynthesis was only slightly greater than the measured C02 flux. In contrast, on 30-

0ct high temperatures (mean daily Ta= 35°C) resulted in much larger calculated rates of 

canopy and soil respiration, so that the estimated gross canopy photosynthesis was much 

Quarrion 
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Figure 7.15 As in figure 7.14, but comparing the model of canopy photosynthesis 

with Bowen ratio data of canopy C02 fluxes. 
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greater than the measured net canopy C02 flux. Respiration was calculated by 

extrapolation of night C02 flux measurements, which covered the temperature range 

from 5-25°C (figure 7.8). Extrapolation of the response of respiration to temperature 

beyond this range, up to 35°C, may not be valid, possibly over-estimating respiration. 

In Matong, model predictions closely matched gross canopy photosynthesis on 25-

0ct and 30-0ct for both tent and Bowen ratio data. On 13-0ct the model matched the 

tent data but not the Bowen ratio data, which were lower than the model predicted. 

Different flux data from the tent and Bowen ratio systems were not consistently 

observed, in Matong (Chapter Three), so one system may have been in error. On the 13-

0ct the canopy leaf area index was near its maximum (3.5 m2.m-2), suggesting that the 

higher rate measured by the tent and predicted by the model was the real rate of canopy 

photosynthesis. 

The tent data of Quarrion were shown to be systematically higher than the fluxes 

measured by the Bowen ratio system, as the tent was in part of the paddock that had 

denser leaf area than the average of the patchy crop (Chapter Three). Model predictions 

of canopy photosynthesis for Quarrion matched the Bowen ratio flux measurements on 

25-0ct and 30-0ct, but overestimated the C02 fluxes on 13-0ct. 

7 .4.6.2. Daily Photosynthesis 

Daily rates of canopy photosynthesis predicted from the sun/shade model and the 

measured canopy photosynthesis were compared for all days of measurements (figure 

7.16). Similar comparisons could be made with midday fluxes, since photosynthesis at 

these times is the major component of the daily total. However, comparisons with the 

daily total removes the short term fluctuations due to temperature and light variations 

and provides an indication of overall model fit. 

Model predictions for the Matong canopy were greater than measurements for days 

pre-anthesis and near anthesis. Post-anthesis predictions were closer to the 

measurements. Model predictions for Quarrion were lower than the tent measurements 

for all days, and higher than the Bowen ratio data. Model predictions of canopy 

photosynthesis in the tents were different to predictions for comparison with Bowen 

ratio data, since the tents had more diffuse light, were warmer and had different 

turbulence. 

257 



~i 
<'I" 'E 

Chapter Seven 

Matong Quarrion 
1.6 ...--H--------"''-----......---u--------~ 

1.2 

0.8 

0.4 
• Data 
A MxE1 

A 

• • •• ~ 

• 
A 

• 

g<'I o.o........--n-~-~-~-~-r---tt-~--'--~-~~ 

1 
"O 1.2 

":t A 

0.8 

0.4 

~ 
A 

• • • 
A 

• 
0.0._..__,,_..__...._ _ _.__~ ........ __,,_ .......... _ _.__~ _ ___.~ 

6 Sep Q:t 18 Q:t 25 Q:t 1 Nc1I 6 sq:; 11 Q:t 18 Q:t 25 Q:t 1 Nc1I 
Date 

Figure 7.16 Daily gross canopy photosynthesis integrated from flux 
measurements (•) and model predictions (~) of all days of measurements. Tent 

measurements (top panels) and Bowen ratio (bottom panels). Cultivar Matong 

(left panels) and Quarrion (right panels). Model predictions were based on 

morning leaf photosynthetic capacity values. 

Photosynthesis of stems and the developing spikes may have made an increasing 

contribution to canopy photosynthesis, which was not measured separately nor included 

in the models. 

Canopy respiration increased as the crop matured, which could also be attributed to 

increasing temperature. The ratio of net daytime canopy photosynthesis to gross canopy 

photosynthesis decreased as the season progressed (figure 7 .17). 
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Figure 7.17 Ratio of net daytime canopy photosynthesis to gross canopy 

photosynthesis (AcNe/AcGros~ of Matong (squares) and Quarrion (circles), 
measured with the tent (open symbols) or a Bowen ratio system (solid symbols). 

Total daytime canopy respiration as a fraction of gross photosynthesis 
('I:.Rcoa/AcGros~ is shown on the right axis. Note this canopy respiration is 

daytime only, it does not include respiration during the night . 

7.4.7. Sensitivity analysis 

Sensitivity of the sun/shade model was assessed by changing each parameter by 10% 

and calculating the response of predicted daily gross canopy photosynthesis, expressed as 

a relative response ((M/Ac)l(!ulx)). The sensitivities to an increase or decrease of the 

parameters were similar so they are expressed as the average (Table 7.5). Sensitivities 

were assessed for two days data, 25-0ct and 30-0ct. The latter had lower canopy leaf 

area and higher temperatures. 

At temperatures near 25°C, on 25-0ct, the most influential parameters were those 

directly measured, particularly V1, Le and Pi· The first two determine canopy 

photosynthetic capacity, which together with Pi determine the rate of canopy 

photosynthesis. Changes in canopy respiration and its activation energy had less effect 

on canopy photosynthesis. These parameters were more influential on hot days (30-0ct) 

when respiration was a greater proportion of gross photosynthesis. Leaf nitrogen (N1) 
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and electron transport capacity (Jm) had little effect on canopy photosynthesis, because 

the former is only used to model the distribution of photosynthetic capacity in the 

canopy, while the latter only affects photosynthesis of shaded leaves, which have 

previously been shown to be relatively insensitive to photosynthetic capacity (Field, 

1983; Sadras et al., 1993). 

Table 7.5 Sensitivity, (MJAc)l(!l.x/X), of the sun/shade model of gross canopy 

photosynthesis to each parameter. Data for the model were from the Matong 

canopy on 25-0ct (Mean day Ta= 22°C) and 30-0ct (Ta= 35°C). The parameters 

are separated into those that were directly measured (left columns) and those that 

were estimated from the best values in the literature (right columns). 

Measured Sensitivity Sensitivity Estimated Sensitivity 
Parameters 25-0ct 30-0ct Parameters 

Le 0.68 0.99 r. -0.33 

Pi 0.68 1.16 kn -0.18 
V1 0.55 0.49 Ev -0.16 
Re -0.27 -1.10 kb -0.11 
ERc -0.26 -2:16 e 0.11 

lm 0.08 EK' 0.07 
N1 0.02 kd 0.04 

(I) 0.04 

The model of canopy photosynthesis was less sensitive to parameters estimated from 

published values. The most influential of these was r ., which is related to the Michaelis­

Menten constants of Rubisco (Farquhar et al., 1980, their eq. 38). The parameter 

describing the distribution of nitrogen in the canopy, kn, was not very influential as 

previously described (Hirose & Werger, 1987a). The activation energies of Rubisco 

parameters, Ev, E Ko and E Kc had a small effect on daily canopy photosynthesis, despite a 

large diurnal temperature change. This highlights the dominance of photosynthesis 

during the middle of the day when temperature variations were small compared to the 

relatively low photosynthetic rates that occurred during the hours of rapid temperature 

change at either end of the day. The canopy light extinction coefficients, kb and kd, and 

the coefficient of light scattering by leaves, ro, were the least influential. 
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Temperature had a large effect on the sensitivity of the model (Table 7.5). On the 

second day analysed (30-0ct), the respiration parameters Re and ERc had much greater 

effect on modelled canopy photosynthesis. This day was characterised by high 

temperatures and high respiration rates with an estimated 50% of gross photosynthesis 

respired during the day. The influence of Le, V1 and Pi was enhanced at higher 

temperatures. 

For each of the parameters an uncertainty of their values was estimated (Table 7.6). 

In the case of measured parameters the uncertainty was based on the standard error of 

the measurements. Uncertainties for the estimated parameters was calculated from the 

typical range of values observed in the literature, which was assumed to be a ±95% 

confidence interval, and thus approximately twice the standard error. The uncertainty 

was combined with the model sensitivity to the parameters (Table 7 .5) to obtain an 

estimate of the potential error in gross canopy photosynthesis (Mcgross) (Table 7.6)., 

Adding only those error estimates that are greater than 1 %, provides a combined 

uncertainty of ±20% of gross canopy photosynthesis. While this is probably an upper 

estimate,. it provides an indication of the overall confidence in the model predictions and 

suggests which parameters are likely sources of error. 

Table 7.6 Uncertainty estimate of parameters and their effect on modelled gross 

canopy photosynthesis when combined with the model sensitivity. Model 

sensitivity estimates were from the 25-0ct (Table 7.5). The uncertainty estimates 

were based on standard errors in the case of measured parameters and on an 

estimate of the range of typical values for the case of the estimated parameters. 

Measured Uncertainty Mci:ross Estimated Uncertainty Mci:ross 
Parameter % % Parameter % % 

Le 10 6.8 r. 5 1.7 

Pi 1.5 1.0 kn 10 1.5 
V1 5.7 3.1 Ev 5 0.8 
Re 12.6 -3.4 kb 10 1.1 
ERc 4.7 -1.2 0 7 0.8 

Im 8.2 0.6 EK' 5 0.4 
N1 5.4 0.1 kd 10 0.4 

0) 13 0.5 
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7 .5. Discussion 

7.5.1. Variation of photosynthetic capacity 

Interpretation of photosynthesis measurements in this experiment was aided by use of 

the Farquhar et al. model of leaf photosynthesis which allowed separation of the stomata} 

and non-stomata} effects on photosynthesis. The decline in photosynthesis during the 

day was interpreted as a decrease in photosynthetic capacity at both the leaf and canopy 

scale as P; did not decline (figures 7.9 & 7.13). A regression equation explained the 

decline in photosynthetic capacity as a function of cumulative evaporation, which is 

presumably a surrogate for declining leaf or soil water status, which have previously been 

associated with decreasing photosynthesis in wheat (Johnson et al., 1974; Martin & 

Ruiz-Torres, 1992; Morgan et al., 1993). 

The mechanistic basis for the decline in photosynthetic capacity is not known. Water 

stress possibly inhibits electron transport in isolated chloroplasts (Boyer & Bowen, 1970; 

Keck & Boyer, 1974), although Kaiser (1987) and Graan & Boyer (1990) showed that 

high C02 concentrations can remove such inhibition. The decline in Rubisco activity 

under water stress is insufficient to explain the decrease of photosynthesis of leaves 

(Gimenez et al., 1992; Gunasekera & Berkowitz, 1993). One difficulty in determining 

the mechanism of water stress effects on photosynthesis is the tight coordination between 

the Rubisco, RuBP regeneration components of the photosynthetic apparatus, so that 

each component regulates its activity to match the other. Thus, where I have expressed 

the decline in photosynthetic capacity as a decrease in Rubisco capacity the actual 

mechanism of the decline may be caused by reduced electron transport or reduced 

activation of Rubisco. 

The response of photosynthesis to water stress is not included in the Farquhar et al. 

model of leaf photosynthesis, nor any other mechanistic model. This is a serious 

limitation to the use of Farquhar et al. model for analysis of field data or the prediction 

of photosynthesis in water-limited conditions, which are relevant to any study of water­

use efficiency or the carbon dynamics of many ecosystems of the globe. Empirical 

relationships describing the decline in photosynthetic capacity in response to water 

potential have been used in models of leaf and canopy photosynthesis, although the 

sensitivity of the response varies (Grant, 1992b; Grant, 1992a). 
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Alternative explanations for the decline in apparent photosynthetic capacity during 

the day are triose phosphate limitations to photosynthesis (Sharkey, 1985) or 

heterogeneous stomatal opening (Terashima et al., 1988). Depletion of available 

phosphates for photosynthesis has been suggested as an explanation for decreased 

photosynthesis with low sink strength (Herold, 1980), at high C02 (Sharkey, 1985) or 

low temperature (Sage & Sharkey, 1987), but seem highly unlikely during grain filling of 

wheat at the warm temperatures encountered in this experiment. Patchy gas exchange 

across leaves has been observed in a diverse range of plants in artificial conditions, but 

not in wheat and only to a limited extent in field conditions (Terashima, 1992). 

Additionally, Cheeseman (1991) showed the effect of variable stomatal opening on 

calculations of photosynthesis to have been minimal with the extent of patchiness 

observed in most experiments, although what happens under water stress is not clear. 

Thus, these phenomena of triose phosphate limitations to photosynthesis and patchy gas 

exchange are possible alternative explanations for the observed diurnal decline in 

apparent photosynthetic capacity, but it is unlikely that they were significant. New 

approaches using fluorescence imaging of patchy leaves may indicate to what extent 

photoinhibition is contributing to this phenomenon. 

7.5.2. Comparison of model with canopy flux data 

The observed diurnal variation of gross canopy photosynthesis was predicted by the 

sun/shade canopy model, although the model was not accurate in predicting the absolute 

flux (figures 7.14 & 7.15). This is not a reflection of structural flaws in the model, but 

rather indicates the difficulty of parameterising canopy photosynthetic capacity from 

stochastic leaf-scale data. The comparison of these model predictions with canopy data 

reflect the difficulty of scaling photosynthesis from leaves to canopies. Differences 

between the model predictions and the measured fluxes were of a similar magnitude to 

the differences between the tent and Bowen ratio flux measurements. 

The sun/shade model of canopy photosynthesis described here, implicitly assumes 

profiles of leaf photosynthetic capacity, which have been shown to affect canopy 

photosynthesis (Field, 1983; Hirose & Werger, 1987a; Reynolds et al., 1992). As such, 

this model overcomes a limitation of previous sun/shade models of canopy 

photosynthesis (Boote & Loomis, 1991 ). Separate treatment of the sun and shaded 

leaves avoids the problem that single-layer models have with averaging the non-linear 
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response of photosynthesis to absorbed light (Norman, 1980; Johnson et al., 1989; 

Reynolds et al., 1992). 

Big-leaf models of canopy photosynthesis have been proposed (Sellers et al., 1992; 

Amthor, 1994). They are based on the assumption of an optimal distribution of 

photosynthetic capacity within the canopy in relation to the distribution of absorbed light. 

In this study, the distribution of photosynthetic capacity did follow the distribution of 

daily absorbed light (figure 7 .5) as has been observed in many other canopies (Hirose & 

Werger, 1987a; Anten et al., 1995). However, this does not validate the big-leaf models, 

despite its presentation as a scaled-up mechanistically-based model. I showed in the 

previous chapter (Six) that big-leaf models are based on the incorrect assumption of the 

similarity of the instantaneous and time-averaged profiles of absorbed light in canopies. 

Use of inappropriate scaling models, that do not accurately represent the processes, can 

be very misleading as their scaling basis can lead to a false sense of validity. For 

example, Lloyd et al., (1995) fitted a big-leaf model to canopy flux data, and proceeded 

with a mechanistic interpretation of canopy photosynthesis in terms of electron transport­

limited and Rubisco-limited photosynthesis, when the parameters fitted at the canopy 

scale did not correspond with their leaf scale equivalents. Their model did not explain 

much of the variation in photosynthesis, showing light saturation that was not observed 

in the data. The variation in canopy photosynthesis that was explained by their model 

was a result of the use of a non-rectangular hyperbola for the light response of canopy 

photosynthesis, which has no mechanistic basis in terms of the biochemistry of 

photosynthesis. Errors involved with averaging of light over sunlit and shaded leaves for 

use in the non-linear response of photosynthesis to light are large (Sinclair et al., 1976; 

Norman, 1980; Smolander, 1984). The sun/shade model of canopy photosynthesis 

evaluated here overcomes these problems of big-leaf models and has the advantages of 

allowing within-canopy profiles of leaf photosynthetic capacity and the use of a 

biochemically based model of photosynthesis. 

If the data in figure 7 .14 & 7 .15 were plotted as modelled versus measured, then the 

correlation coefficient is 0.80, and suggest that the model works well across a range of 

canopy leaf areas and environmental conditions. Presentation of model predictions and 

data in this manner tends to mask the light saturation of canopy photosynthesis and 

curvature predicted by some models that measurements of C02 fluxes do not sustain 

(Baldocchi, 1989; 1992; 1993; Lloyd et al., 1995). 
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7.5.2.1. Model predictions of Daily Photosynthesis 

Comparisons of measured and modelled canopy photosynthesis were made with daily 

integrated gross photosynthesis (figure 7.16). The measured daily gross photosynthesis 

was remarkably constant while the canopy leaf area was sufficient to intercept most of 

the light (ie. until 30-0ct), which reinforces canopy light interception as the main 

determinant of canopy photosynthesis (Monteith, 1977; Barnes et al., 1990). The 

sun/shade model predictions varied more than the canopy fluxes, due to uncertainty and 

variance in the leaf photosynthesis, leaf nitrogen, canopy leaf area and canopy respiration 

measurements (figure 7.11 & Table 7.5). 

The apparent decline in leaf photosynthetic capacity as the crop matured (figure 

7 .11) is in contrast to the approximately constant rate of measured daily canopy 

photosynthesis. Harley & Tenhunen ( 1991) also found significant seasonal variation in 

apparent leaf photosynthetic capacity of Quercus coccifera in response to water stress. 

One possible explanation is that the measured leaves in this study were not representative 

of all leaves in the canopy. It seems likely that the most exposed leaves at the top of the 

canopy, which were also those measured, were more subject to water stress than the rest 

of the leaves in the canopy. · Dwyer and Stewart (1986) and Pattey et al. (1991) 

observed greater effect of water stress on more exposed leaves in com fields and 

concluded that extensive sampling is necessary to extrapolate leaf measurements to the 

canopy scale, particularly with water stress conditions. 

265 



Chapter Seven 

7.6. Conclusions 

Diurnal variation of apparent photosynthetic capacity at both the leaf and canopy 

scale complicated application of the sun/shade model to this data set. The mechanistic 

Farquhar et al., model of leaf photosynthesis does not include the effect of water stress. 

A simple regression model could describe the variation of photosynthetic capacity, but a 

mechanistically based, or more universal, model of this phenomena would be preferable. 

Predictions from the sun/shade model of canopy photosynthesis mimicked the diurnal 

variation of measured canopy gross photosynthesis, accurately reproducing the canopy 

response to absorbed light (figures 7.14 & 7.15), but not the absolute canopy C02 flux, 

due to the difficulty of parameterising the model from leaf scale measurements. Despite 

the variability of leaf photosynthetic capacity, predicted daily canopy photosynthesis 

followed the day-to-day variation of measured daily gross canopy photosynthesis. 

The major sources of uncertainty were leaf photosynthetic capacity, canopy leaf area 

measurements and estimates of canopy respiration from night-time C02 flux 

measurements. At ·high temperatures (>30°C) the temperature response of canopy 

respiration became an important factor, rising to 50% of the daily g~oss canopy 

photosynthesis. In future, estimates of canopy respiration during the day could be made 

by covering the tent with aluminium sheeting to block light and heat. Although there are 

uncertainties with this technique, such as post-illumination burst of respiration, it would 

at least provide some estimate of canopy respiration. 

The sun/shade canopy model overcame the problems of big-leaf models, allowed 

incorporation of within-canopy profiles of photosynthetic capacity and was a reasonable 

predictor of canopy photosynthesis. The sun/shade canopy model presented here is a 

truly scaled version of the Farquhar et al. model of leaf photosynthesis. It is based on 

well understood leaf physiological processes that have measurable parameters, with 

known biological significance and requires no fitting at the canopy scale. The numerical 

simplicity of this canopy model will facilitate its incorporation into models to assess the 

effect of plant physiological traits on water-use efficiency or models of global carbon 

cycling. 
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7. 7. Appendix: Atmospheric attenuation of PAR 

Data of diffuse light were not collected, but were estimated using the model of 

atmospheric attenuation of PAR (eq. 6.26). The atmospheric transmission coefficient 

(a), was estimated from the model of light scattering by the tent and an incidental 

measure of diffuse light in the tent. PAR was measured continuously inside the tents, 

which were constructed of an aluminium frame and plastic walls. As the sun traversed 

the sky, there were two occasions each day, at approx. 07: 15 and 16:45, when the frame 

cast a shadow on the light sensor (figure 7.18). The diffuse light measured by the 

sensors on these occasions was used to calculate an atmospheric transmission coefficient 

as outlined below. 

The ratio of measured irradiance to the extrapolated unhindered irradiance was used 

as a measure of the fraction of diffuse light in the tent (f,) at the point of maximum 

shading. The fraction of diffuse light outside the tent (j
0

) was calculated from f, by use 

of a rearrangement of the model of light scattering by the tent ( eq. 3 .11); 

f
0 

= JJl- J,)(1- lj't,) + J,, (7.11) 

where 't1 is the transmission coefficient of the side panel of the tent (eq. 3.10) and fw is 

the fraction of light intercepted by the tent walls scattered into the tent (eq. 3.6). This 

value of f
0 

was then used to determine a by rearranging the model of atmospheric 

attenuation of light (eq. 6.26): 

1- f, 
[ ]

Vm 

(7.12) 

where fa is the proportion of forward scattering to the earth's surface by atmospheric 

attenuation of PAR and m is the optical air mass and is defined as the ratio of the mass of 

atmosphere traversed per unit cross-sectional area of solar beam to that traversed for a 

site at sea level if the sun were directly overhead (Campbell, 1977). 
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Figure 7.18 Light intensity in the tent, measured with a PAR sensor, as affected 

by shadows, that was used to determine fraction of diffuse light and to calculate 

the atmospheric transmission coefficient using eq. 7.12. 

. Values for a calculated for each day of measurements are given in Table 7. 7. An 

example of the shading is shown in figure 7 .18 for 25-0ct. Between the hours of 07:00 

and 08:00 and again between 16:00 and 17:00, the irradiance measured by the PAR 

sensor dropped below the typical diurnal sinusoidal light curve. These times 

corresponded with a shadow cast on the sensor by the frame of the chamber. As the 

shadow moved across the sensor the apparent irradiance dropped as the sensor moves 

into penumbra! shadow and reached a minimum in umbra! shadow. Apparent irradiance 

increased as the sensor moved out through the penumbra and returned to the diurnal 

sinusoidal trace. At the minimum irradiance only diffuse light reached the sensor. The 

unshaded irradiance over this period was determined by extrapolating from the diurnal 

irradiance trace, allowing a calculation of the ratio of apparent to unhindered irradiance. 
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The minimum value of this ratio was used as a point measurement of fr, which was 

adjusted for scattering of light by the tent and converted to f
0 

using eq. 7.11 and then 

converted to a using eq. 7.12 (Table 7.7). 

Table 7.7 Atmospheric transmission coefficients 

calculated from shadows cast on the light sensor 
inside the tents. 

Atmospheric transmission coefficient (a) 
Date Matong Quarrion 

AM PM AM PM 
12/10 0.67 0.74 
13/10 0.73 0.78 
17/10 0.66 0.73 
18/10 0.72 0.75 0.75 0.74 
24/10 0.71 0.68 0.72 0.71 
25/10 0.75 0.72 0.73 0.70 
26/10 0.77 0.75 
30/10 0.62 0.62 
01111 0.66 0.61 0.72 0.64 

Calculated values of a were different between morning and afternoon. This could be 

attributed to several factors. Most importantly the data may not have coincided with the 

point of maximum shading, so that the calculated diffuse light may have included a 

proportion of penumbra! light. This would have led to an over-estimation of fr and low 

values of a. Differences between sensors, due to different calibrations or different cosine 

responses, were probably small. Differences have existed between each tent due to 

unknown different amounts of dust on the walls with different scattering properties. The 

observed decrease in a through the day was expected as the humid planetary boundary 

layer increased in depth with increasing atmospheric attenuation. Data from days with 

high cirrus cloud (30-0ct to 01-Nov) show lower values of a as expected (Gates, 1980). 

Despite these limitations, values for a were adequate to use in the model of atmospheric 

attenuation to extrapolate estimates of f
0 

over the entire day, given that solar elevation 

was the major source of variation off
0

• 
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Summary 

A combination equation model, for use with a two-layer canopy model that treats 

sunlit and shaded fractions of the canopy separately, is presented to determine 

transpiration and leaf temperatures of a canopy. It was combined with a Sun/Shade 

canopy model of gross canopy photosynthesis and a stomata} conductance model. 

A comparison with a multi-layer canopy model demonstrated that the Sun/Shade 

canopy model, accurately partitioned the available energy between sensible and latent 

heat and between the sunlit and shaded fractions of the canopy. A simple single layer big 

leaf model overestimated canopy photosynthesis, particularly mid-morning and mid­

afternoon, due to the averaging of the non-linear light response of photosynthesis. 

Model predictions from the Sun/Shade canopy model, with three different 

parameterisation schemes, were compared with ten days data of canopy fluxes over a 

range of air temperatures and canopy leaf areas. When parameters were derived from 

the canopy data, the model reproduced canopy photosynthesis, stomata} conductance, 

sensible heat flux and transpiration very well (r = 0.92, 0.95, 0.86, 0.95 respectively). 

With parameters derived from leaf measurements, obtained concurrently with the canopy 

data, the model still performed well but with more scatter (r = 0.90, 0.64, 0.80, 0.84 

respectively). Ignoring the daily variation of parameter values, to mimic a priori choice 

of parameters, introduced significant bias in the stomatal conductance predictions, but no 

more variability in the flux measurements (r = 0.91, 0.83, 0.73, 0.83 respectively). 

The separate treatment of the sunlit and shaded fractions of the canopy in this model, 

allowed very good predictions of diurnal variation of photosynthesis and water use; as 

good as a multi-layer model but with far fewer calculations. It provided a significant 

improvement over single-layer big leaf models, and can be used with more confidence to 

explore canopy responses to changed environments as may occur with increasing 

atmospheric C02 concentrations. 

The response of transpiration efficiency (ratio of gross canopy photosynthesis to 

canopy transpiration) to reduced stomata} conductance was predicted, by the sun/shade 

canopy model, to diminish at the canopy scale compared to the leaf scale, but the 

response to altered photosynthetic capacity was similar at the leaf and canopy scales. 

The modelled effect of canopy leaf area on direct soil evaporation had a large impact on 

water-use efficiency (ratio of net canopy C02 flux to total canopy evaporation). 
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8.1. Introduction 

Scaling physiological process from leaves to canopies is important to understanding 

how plants with physiological traits that confer improved water-use efficiency (ratio of 

photosynthesis to evaporation) at the leaf scale, can benefit crops at the canopy scale. 

Recently, it has also been investigated from the perspective of understanding vegetation 

response to climate change (Ehleringer & Field, 1993; Jarvis, 1995). An essential part of 

scaling physiological processes are mathematical models. Mechanistic models of leaf 

scale processes that can be scaled to describe canopy processes are particularly powerful, 

because knowledge from the leaf scale can provide insight into the behaviour of the 

canopy scale processes (Norman, 1993). To be useful, models must be realistic, accurate 

and sufficiently simple to be parameterised; attributes, which are often incompatible 

(Raupach & Finnigan, 1988). 

Earlier work showed that a simple Big Leaf model was unlikely to able to adequately 

reproduce the diurnal change of canopy photosynthesis (Chapter Five). This was found 

to be due to the highly non-linear response of photosynthesis to absorbed light. An 

alternative canopy model which treats sunlit and shaded fractions of the canopy 

separately was developed (the Sun/Shade canopy model), which overcame these 

problems and reproduced canopy data well (Chapter Six). This model still retained the 

advantage of being much simpler than a multi-layer model, although these also 

reproduced canopy data well. 

Several models of stomatal conductance were compared with a set of leaf data 

(Chapter Four). Those that utilised the relationship between stomatal conductance and 

photosynthesis (Cowan, 1977; Ball et al., 1987; Leuning, 1995) were found to be better 

able to explain the data than those that only used environmental variables. These 

stomatal models were also found to adequately describe canopy conductance and 

transpiration (Chapter Five), although the value of the parameters were different at each 

spatial scale. 

Having treated the photosynthesis and water use aspects of canopy physiology 

separately in these preceding chapters, it remains to combine them and validate their 

predictions against canopy scale data. The linkages between photosynthesis and water 

use through the intercellular C02 concentration and the energy balance need to be 

included. Since the radiation load on the sunlit and shaded leaves is very different, a leaf 
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energy balance for each fraction of the canopy needs to be used. Division of the 

combination equation for evaporation, and energy balance, between two sections of a 

canopy was demonstrated in sparse canopies, where the soil and foliage were treated 

separately (Shuttleworth & Wallace, 1985; Shuttleworth & Gurney, 1990). Such a 

scheme could be modified for use on the separate sunlit and shaded fractions of a 

canopy. 

This chapter presents the Sunlit/Shade combination equation to combine the 

photosynthesis and evaporation models. It compares the Sun/Shade canopy model with 

a multi-layer model and with the simple Big Leaf model. Predictions from the Sun/Shade 

canopy model are then compared with ten days of data from a wheat canopy, with a 

range of air temperatures and canopy leaf area. The chapter then goes on to show model 

predictions of canopy responses to high C02 and changes of canopy leaf area. The 

Sun/Shade canopy model is used to compare the response of transpiration efficiency 

(ratio of gross canopy photosynthesis to canopy transpiration) to changes in stomatal 

conductance or photosynthetic capacity at both the leaf and canopy scales. 
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8.2. Methods 

In combining the photosynthesis and water use models a leaf energy balance needs to 

be included since changes in stomatal conductance affect the partitioning of available 

energy between latent and sensible heat. Additionally, the radiation balance includes 

long-wave radiation which is affected by surface temperature. These effects are 

incorporated as describe below. 

8.2.1. Leaf energy balance 

Changes in surface temperature change the long-wave radiation (EpT/) from the 

surface and affect the energy balance which in tum affects the available energy (Q) for 

evaporation. The feedback between surface temperature and evaporation rate can be 

incorporated into the combination equation by use of the isothermal net radiation 

concept, 

Q = [PAR + [ NIR + Ld - Lu 

:: Q
0 
-g,C/iT 

(8.1) 

where I PAR and I NIR are the net absorbed PAR and NIR radiation, Ld and Lu are the long­

wave radiation from the sky and the canopy respectively and Q
0 

is the isothermal net 

radiation (the available energy if leaf temperature were equal to air temperature, Ta), 

(8.2) 

and g, is a radiative conductance (4crc/I'3/CP), <J is the Stefan-Boltzmann constant, £1 is 

the thermal emissivity of the leaf, T is air temperature, CP is the isobaric specific heat of 

air, !iT is the temperature difference between the leaf and air outside the boundary layer 

(T1 - Ta) and the last term of eq. 8.1 accounts for the additional radiation exchange as a 

result of the difference between leaf and air temperatures. Note exchange of thermal 

radiation is assumed to be significant from only one side of the canopy, the upper surface 

exposed to the sky. 

Introducing this concept into the combination equation results in the expression for 

evaporation rate (E1) (Cowan cited in; Jones, 1976) (see appendix for details), 
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(8.3) 

where E is the rate of increase in the latent heat content of saturated air with increase in 

sensible heat content, Lis the latent heat of vaporisation of water, Dis the water vapour 

concentration deficit of the air outside the boundary layer, rs is the stomatal resistance, rb 

is the boundary layer resistance and r* bH is the combined resistance to sensible and 

radiative heat transfer in parallel (11(1/rbH +gr)). 

Related equations can also be derived for the surface temperature and sensible heat 

flux (H) (see appendix for details), 

(8.4) 

(8.5) 

7.2.2.4.3. Leaf boundary layer resistances 

Conductance to sensible heat transfer across a leaf boundary layer under forced 

convection (gbHw) is given as (Jones, 1992) 

(8.6) 

where the conductance is the reciprocal of the resistance (rb), u is the wind speed, w1 is 

the dimension of the leaf in the direction of the wind (typically 0.02 m for wheat leaves, 

in this study) and the empirical coefficient has a value of 0.01. 

7.2.2.4.4. Boundary layer conductance in free convection 

At low wind speeds leaf temperature can increase so that free convection is a 

significant factor that needs to be considered in calculating leaf boundary layer 

conductances. Monteith ( 1973) showed that for free convection the leaf boundary layer 

conductance is 
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(8.7) 

in which DH is the molecular diffusivity for heat and the Grashof number (Gr) is 

Gr= 1.6X10817; -T,,jw/ (8.8) 

where T1 and Ta are leaf and air temperatures respectively. 

Total boundary layer conductance to heat is obtained by adding the forced and free 

convection components in parallel, 

(8.9) 

Boundary layer conductance to transfer of other entities (water vapour and C02) differs 

to that for heat. In forced convection the conversion from heat is in proportion to the 

ratio of diffusivities to the power 2/3, while in free convection the 3/4 power is 

appropriate (Bird et al., 1960) cited in (Finnigan & Raupach, 1987), 

(8.10) 

8.2.2. Combination equations for Sun/Shade canopy model 

Applying the combination equation to separate sunlit and shaded fractions of the 

canopy, to determine evaporation and leaf temperature, is more complicated than with a 

big leaf model, because not all resistances apply to all fluxes. Shuttleworth and Wallace 

(1985) presented an evaporation model that could be applied to sparse canopies with 

evaporation from the soil as well as the foliage. I have adapted their model to be used 

for separate sunlit and shaded layers within the canopy. 

8.2.2.1. Resistance framework 

The canopy is considered to have two classes of leaves; sunlit and shaded, with 

different radiation, stomata! conductance and leaf temperatures. Resistance to transfer of 

water vapour, heat and C02 in the two-layer system is given in figure 8.1. 
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Height 

x (ref) 

h (top of canopy) 

(d + zoH)sun 

(d + ZoH)Sh 

ho (bottom of leaves) 

O (ground) 

Ta, Dx 

Tsun Lsun 

Figure 8.1 Schematic diagram of resistances (,,, temperatures ( T) and water 

vapour deficit (0) for a 2-layer model of canopy evaporation. Subscripts refer to 

values associated with: Sun - sunlit fraction of canopy, Sh - shaded fraction of 

canopy, c - canopy stomata!, b - leaf boundary layer, i - within canopy and atm -
atmospheric. 

Resistances to transport in the turbulent boundary layer above and within the canopy 

are assumed to be equal for heat, water vapour and C02, yet different in leaf boundary 

layers (which are assumed to be effectively laminar (Finnigan & Raupach, 1987)) in 

proportion to the ratio of molecular diffusivities to the 2/ 3 power (Bird et al., 1960). 

Individual leaves have a stomata! and boundary layer conductance, which are assumed to 

act in parallel with other leaves in the canopy. (The impact of alternative assumptions 

for leaf to canopy scaling of stomatal conductance, such as those suggested by 

McNaughton (1994) and Raupach (1995) are discussed later.) Within-canopy transport 

is described by K-theory, which despite being invalid in some situations (Denmead & 

Bradley, 1985) has been shown to given acceptable results (Dolman & Wallace, 1991; 

Van den Hurk & McNaughton, 1995). The transport coefficient, K, is integrated to the 

top of the canopy to give a within-canopy resistance to transfer. Resistance to transfer 
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from the top of the canopy to the reference height is given by integration of an assumed 

log profile of wind speed, ignoring stability corrections (which were insignificant in the 

situations studied here, see figure 5.2). 

Use of the Penman-Monteith equation in a two-layer system requires definition of a 

water vapour deficit, D (mol/mol), at the point at which the two layers have a common 

path of transport, in this case the top of the canopy, h. Water vapour deficit at the top of 

the canopy, Dh, is calculated from the water vapour deficit at the reference height, Dx, 

the above-canopy aerodynamic resistance, ratm' and the total evaporation rate, E, such 

that, 

' 
(8.11) 

=DX -(c + l)ratmE + c~lmQ/ L 

where Eq = EQ/(L(c+l)), is the equilibrium evaporation rate (which is the rate of 

evaporation that occurs if the overlying atmosphere is in full adjustment with the 

underlying surface). 

Utilizing the isothermal net radiation form of the combination equation (Jones, 1976), 

expressions can be written for the latent heat flux from the sunlit leaf portion of the 

canopy, 

(8.12) 

and the shaded leaf portion of the canopy, 

(8.13) 

where rcsun and rcsh are the canopy stomata! resistances for the sunlit and shaded portions 

of the canopy, r aSun and rash are the leaf-boundary layer and within-canopy resistances to 

sensible heat transfer in series (rb + r;) for the sunlit and shaded portions of the canopy, 

and r*asun and r*ash are the combined leaf-boundary layer and within-canopy resistances 

with the additional parallel conductance of radiative heat transfer for the sunlit and 

shaded portions of the canopy, 
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• 
raSun = /( ) • 

1 'bsun + 'isun + grSun 

I 
(8.14) 

(8.15) 

Q
0 

is the isothermal available energy and gr is the associated radiative conductance for 

the sunlit and shaded fractions of the canopy as explained in the Appendix. 

8.2.2.2. Two-layer evaporation 

A simple expression for Dh using isothermal radiation, can not be obtained. Instead, 

iteration with the solution for surface temperature is used to determine Q in eq. 8.11. 

Substitution of Dh (eq. 8.11) into the expressions for LEsun and LEsh (eqs. 8.12 & 8.13) 

leads to 

(8.16) 

(8.17) 

Total evaporation is given by LE = LEsun + LEsh· Collecting terms of LE and 

simplifying with the definitions; Rsun = rcSun + raSun + er*aSun• Rsh = rcSh +rash+ er*aSh and 

Ra= (E + l)ratm leads to the evaporation model for two layers (see Appendix), which can 

be written so that both components converge to a Penman-Monteith type equation when 

either Rsun or Rsh are infinite, 

(8.18) 

where the terms are given as 

(8.19) 

(8.20) 
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(8.21) 

(8.22) 

8.2.2.3. Two-layer surface temperature 

As with the evaporation calculations, surface temperature calculations require 

determination of the temperature at the top of the canopy, Th. Beginning with the 

sensible heat flux, H, between h and x, 

(8.23) 

and introducing the energy balance, Q = LE + H, and isothermal radiation results in 

(8.24) 

Rearrangement results in the expression for Th, 

(8.25) 

where r*atm is the combined atmospheric resistance to sensible and radiative heat transfer 

in parallel (ll(llratm +gr)). The same equation can be rewritten for the temperatures of 

the sunlit fraction of the canopy, 

(8.26) 

and of the shaded fraction of the canopy, 

(8.27) 
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8.2.2.4. Calculation of boundary layer resistances 

7.2.2.4.1. Above canopy resistance 

The atmospheric resistance to turbulent transport from the top of the canopy to the 

reference height, 'arm• is calculated assuming a log profile of wind speed (uz), 

_ u. 1 (z-d) u --n --
z k ZoM 

(8.28) 

where u* is the friction velocity, k is von Kannan's constant (0.41), z is the height above 

the ground, d is the zero plane displacement in the canopy and z
0
M is the surface 

roughness of the canopy for momentum transfer. An expression for u. is obtained by 

rearrangement of eq. 8.28, 

(8.29) 

where ux is wind speed at the reference height, x. 

Diffusivity for momentum transfer, KM, is assumed as 

KM= ku.(z-d), for z > h. (8.30) 

Integration of the momentum flux over the height interval from h to x leads to the 

definition of the aerodynamic resistance to momentum, which combined with the above 

definitions gives, 

_ (h )- RT,, Jx dz _ RT,, 1 (x-d)l (x-d) ratm -ra ,X --- -----2- n -- n -- . 
P h KM Pk Ux Z0 M h - d 

(8.31) 

The term RT ,/P converts to molar units, where R is the universal gas constant 

(8.314 J.K·1.mol-1), Tk is the absolute air temperature and Pis atmospheric pressure (Pa). 
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7.2.2.4.2. Within canopy resistances 

Below the top of the canopy the transfer coefficient is assumed to follow an 

exponential profile as a function of height in the canopy, 

KM= Kh exp(-n(l-z/h)), for z < h (8.32) 

where n is a constant(= 2.5) and Kh is obtained by combining eqs. 8.31 & 8.32, 

(8.33) 

(However Thom, (1971) found that K is almost constant within the canopy, as the drag 

coefficient of individual elements increases at slower wind speeds deeper in the canopy. 

This alternative scheme was also used to evaluate the model.) 

As described earlier, the resistance to transfer over a height interval is given as 

(8.34) 

The fraction of leaves at any depth in the canopy that is sunlit, fsun' is given by the 

penetration of direct beam light in the canopy, exp(-k,J.). The total fraction of the 

canopy that is sunlit.fcsun• is given as the integral offsun over the whole canopy leaf area, 

(8.35) 

In compliment to the sunlit fraction is the fraction of canopy that is shaded,fcsh = 1-fcsun· 

Within canopy resistance for the sunlit and shaded fractions of the canopy are 

calculated by assuming that they are at different levels, (d + z0 )sun and (d + z0 )sh 

respectively, which are calculated assuming that for the whole canopy d = 0.63h and z
0 

= 

0.13h (Monteith, 1973) and 

d + Z0 = 0.63h + 0.13h = 0.76h. (8.36) 
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The mean sink height of the sunlit canopy fraction (d + z
0
)sun and shaded canopy fraction 

(d + z0 )sh are given as 

(8.37) 

(8.38) 

where h
0 

is the mean height of the lowest leaves in the canopy. These definitions result 

in (d + z0 )sun varying from 0.76h, if all the canopy were sunlit lfcsun = 1.0), to h when 

fcsun approaches zero. Conversely, (d + z0 )sh varies from 0.76h, if all the canopy were 

shaded lfcsun = 0.0), to h0 whenfcsh approaches zero. 

7.2.2.4.5. Integrated canopy boundary layer conductance 

Since the leaves act in parallel, the bulk leaf boundary layer conductance is obtained 

by integration over the canopy leaf area. This requires a wind profile within the canopy, 

which was earlier implicitly defined as a function of height in the canopy (eq. 8.32). 

However, to integrate over the canopy leaf area requires a wind profile defined on a 

cumulative leaf area basis. The inter-conversion between height and leaf area profiles of 

wind speed requires a profile of leaf area density. Assuming a typical leaf area density 

profile (Norman, 1979), the wind profile could be approximated by a simple expression 

(8.39) 

where ku ( = 0.5) is the within-canopy wind extinction coefficient and uh is the wind speed 

at the top of the canopy, 

uh= uz 1n{(h-d)/z0M )/1n((x-d)/z0 M ). (8.40) 

The bulk leaf boundary layer conductance ( Gb) is obtained by combining the above 

expressions and integrating over the depth of the canopy, 

1/Rb = Gb = f'" gb(zldL = gb(h)f" exp(-0.5L)>S ·dL 
(8.41) 

= (uh/w1f /100· P/(RT,J(1-exp(--0.25L))/0.25 
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The bulk leaf boundary layer conductance for the sunlit fraction ( Gbsun) is obtained by 

integrating with the fraction of sunlit leaves, fsun = exp( -k,,L) over the canopy, 

(8.42) 

The bulk leaf boundary layer conductance for the shaded fraction of the canopy ( Gbsh) is 

calculated as the difference between the bulk leaf boundary layer conductance and the 

sunlit fraction leaf boundary layer conductance; Gbsh = Gb - Gbsun· 

8.2.3. Within-Canopy Profiles for the Multi-Layer Model 

The Sun/Shade canopy model was evaluated by comparison with a multi-layer model. 

In addition to light penetration, leaf photosynthesis, stomata} conductance and leaf 

energy balance which were described previously, the sensible and latent heat fluxes and 

the C02 flux generate within-canopy profiles of Ta, ca and water vapour concentration, 

wa. These profiles are aiso affected by soil fluxes. 

Soil evaporation (E.wu) was estimated as the equilibrium evaporation rate driven by 

the available energy at the soil surface (Qsoii) (Black et al., 1970), which was calculated 

from the incident light, canopy absorption and the measured ground heat flux (G). 

Sensible heat flux from the soil (Hsoil) was calculated as Qsoil - LEsoil· Soil and canopy 

respiration were estimated from measurements of C02 fluxes at night, with temperature 

corrections (Chapter Seven). No information of the source distribution of the respiration 

was available so respiration was assumed to occur entirely at the ground surf ace. 

The resistance to within canopy transport between two levels was calculated from the 

transport coefficient K as described earlier (eq. 8.34). Profiles were generated by 

iteratively calculating fluxes and profiles. Initial estimates of the flux distributions were 

made assuming no canopy profiles. These were then used to generate profiles beginning 

from the top of the canopy and proceeding to the bottom. Flux calculations were 

repeated and new profiles generated until stable values were achieved. Use of a damping 

function resulted in stable solutions after approximately four iterations. 
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8.3. Results and Discussion 

An analysis of the multi-layer model is presented in the first section, followed by an 

analysis of the Sun/Shade canopy model, which was compared with the Multi-Layer 

model. The Sun/Shade canopy model was then compared with canopy data using three 

different parameterisation schemes: parameters derived from canopy scale data (ie. fitting 

the model to the data); parameters for each day derived from leaf data; and single values 

of parameters derived from leaf data of all days combined (ie. typical for this vegetation, 

but without detailed day-to-day variations). 

8.3.1. Multi-Layer Model 

The multi-layer model was run assuming a uniform leaf-angle distribution divided 

into three leaf-angle classes (ex =21°, 47°, 76° from horizontal, see Chapter Six) in 

layers of 0.5 leaf area (m2.m·2) with data from 25-0ct-90 at 12:00 for the Matong 

cultivar of wheat. Model predictions for the three leaf-angle classes of sunlit leaves were 

averaged after weighting by their fractional leaf area ifa. = 0.13, 0.37, 0.50). Within­

canopy profiles of leaf-scale variables (per unit leaf area) for sunlit leaves, shaded leaves 

and the average are shown in figures 8.2 & 8.3. 

Available energy (Q) was nearly constant with depth in the canopy for both sunlit and 

shaded leaves, but the weighted average decreased because the fraction of sunlit leaves 

decreased with depth in the canopy. The profile of absorbed PAR (11) was steeper than 

the profile of Q, a reflection of more rapid attenuation of PAR than near infra-red 

wavelengths. Shaded leaves had a negative sensible heat flux, absorbing heat from the 

air, while sunlit leaves all had positive sensible heat fluxes. Sensible heat increased with 

depth, because stomatal conductance decreased and the leaf boundary layer 

conductances decreased with lower wind speeds deeper in the canopy. However, the 

weighted average of sensible heat flux for all leaves was nearly constant with depth. 

Photosynthesis of the shaded leaves was only 5 µmol.m·2.s·1 lower than the sunlit 

leaves. This occurred despite the contrast in 11, and is a reflection of the light saturation 

of the sunlit leaves. Lower Q on the shaded leaves resulted in lower T1, and lower D 

which offset the lower photosynthesis so that the conductance of shaded leaves was only 

slightly lower (0.1 mol.m·2.s·1) than that of the sunlit leaves. This led to lower ci (>20 

µmol.mol- 1) in sunlit leaves compared with shaded leaves. 
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Q(W.m-~ H(W.m-~ 11 (µmol.rri2.s-1) 

0 100 200 300 -100 0 100 0 400 800 1200 
0 

\ I 

co \ I . -- \ I Q) I \ I '-co I \ I - I \ I co I \ I 
Q) 

2 I \ I 

Q) I \ I 

> 0 +=' co 
::J 

E 
::J 
(.) 

2 

22 24 26 18 21 24 308 310 312 314 

Ta (°C) wa (mmol.mo11) ca (µmol.mo11) 

Figure 8.2 Within canopy profiles of available energy (Q), sensible heat flux (H), absorbed 

PAR (/~. air temperature (Ta), water vapour concentration (w8 ) and atmospheric C02 

concentration (ca>· for sunlit (- - -), and shaded( ...... ) leaves and the average(-) (weighted by 

the sunlit leaf area fraction) as a function of cumulative leaf area. Fluxes are expressed per 

unit leaf area. 
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Both T1 and D increased steeply with depth for both sunlit and shaded leaves, while 

the weighted averages increased more gradually with depth. The decrease of c; with 

depth was more rapid on the sunlit leaves than the shaded leaves, while the average was 

nearly constant with depth. 

Both Ta and wa increased with depth in the canopy in accordance with upward fluxes 

of latent and sensible heat from the leaves and soil, which were more apparent as a 

function of height (figure 8.4). The leaves of the canopy were only present between 0.5 

to 0.8 m above the ground and the top of the canopy was at 1.0 m. The profile of ca 

showed a decrease at the top of the canopy associated with the leaves and their 

photosynthetic sink for C02 and an increase in ca beneath the lowest leaves associated 

with soil respiration acting as a C02 source. These modelled profiles of ca and wa 

resemble profiles measured in a similar wheat canopy at W agga W agga in the following 

year (Raupach et al., 1992; Denmead, 1995), although soil evaporation was much lower 

on that day because not rain had fallen for several days, resulting in shallower profiles of 

water vapour within the canopy. 

Specifying cause and effect in this canopy model is complicated by the feedback 

· 1oops generated by the leaf and canopy boundary layers and the foterdependence of 

wa (mmol.mof 1) & Ta (°C) 
10 15 20 25 30 

2·5 .----w:-af.'"'"'),-----.....--T.,._af..,...z),---..---c-
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(..,._,.,z) 

2.0 

E' 1.5 -
"' 1.0 
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0.0 .___ __ _,__ __ ___._ __ __, __ ___, 
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Figure 8.4 Multi-layer model predictions of within-canopy profiles of air 

temperature (Ta), water vapour concentration (wa) and C02 concentration (ca) with 

height (.z). Models parameters as in figure 8.2. Dotted line indicates the top of the 

canopy. The shaded area represents the height of the leaves. 
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photosynthesis and conductance. Analysis of these loops and feedbacks is presented 

later. Use of K-theory to describe within-canopy transport has been shown to be 

deficient where gusts of wind or large scale eddies penetrate the canopy infrequently 

(Denmead & Bradley, 1985). Lagrangian modelling techniques developed by Raupach 

(1989) predict the concentration profiles as the sum of contributions from 'near-field' 

components, described by diffusion theory, and 'far-field' components, for which 

diffusion is inappropriate. Comparisons of predicted within-canopy profiles from K­

theory and the Raupach model have shown that K-theory adequately describes the 'far­

field' component which is much larger than the 'near-field' component and so reasonably 

approximates the profiles generated by the more physically correct model (Van den Hurk 

& McNaughton, 1995) and that errors from use of K-theory are minimal (Dolman & 

Wallace, 1991). 

8.3.1.1. Effect of free convection 

At low wind speeds leaf boundary layer conductance due to forced convection is very 

low. If such leaves also receive high radiation, their leaf temperature can increase 

dramatically so that free convection, driven by the heating of the air and its buoyancy, 

_4 
(,) 
~ 

.... -

.5 

~2 

0'--~~~~_._~~~~-'-~~~~_._~~~~-' 

00 00 12 

Timed Day 
15 18 

Figure 8.5 Effect of not including free convection in the leaf energy balance on 

leaf temperature ( ~· The effect is shown for sunlit leaves at a leaf angle nearly 

perpendicular (21°) to the solar beam at the bottom of the canopy for the Matong 

canopy on 25-0ct-90. 
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becomes significant. Free convection then prevents extreme leaf-to-air temperature 

differences from occurring. The effect is demonstrated in figure 8.5, where modelled leaf 

temperature was from 2 - 5 °C warmer if free convection was ignored in the leaf energy 

balance. The effect of free convection is greater for leaves deep in the canopy where 

wind speeds are slower and stomatal conductance is small (due to lower photosynthetic 

capacity); in particular those leaves that are sunlit receiving the highest radiation load. 

8.3.1.2. Effect of temperature 

On days with hot ambient air temperatures, it was apparent that the model 

overestimated stomatal closure, so that leaf temperature rose rapidly and canopy 

evaporation and photosynthesis were greatly reduced (figure 8.6). It appears that the 

stomatal model was too sensitive to D1, predicting unrealistic midday stomatal closure. 

However, using any of the stomatal response functions to humidity (based on rh, D1 or-./ 

D1) produced similar results. Only when the stomatal model was fitted to the canopy 

data for that day (g = 0.01+0.474A/(c-r)(83+D1), r2 = 0.88) did the model have 
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Figure 8.6 Fluxes measured by the Bowen ratio system (-a-) and model 

predictions (--) of gross canopy photosynthesis (Ac), conductance (Ge) and 

transpiration (Ee) for the Matong canopy on 30-0ct. Also shown are the measured 

ambient air temperature (T8 ) and water vapour concentration deficit of the air (D) 

0.6 m above the top of the canopy. 
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reasonable predictions. Yet, even using these fitted parameters the model became 

unstable when ambient air temperature was increased by only 2°C. This behaviour 

suggested that the model had some unrealistic temperature response, but which 

component was not readily apparent. 

The behaviour of the model, at high temperatures, was explored by changing Ta with 

constant humidity and all other factors held constant at their midday values (ie. I & u). 

At high Ta ( - 34 °C) and D1 modelled photosynthesis abruptly declined, stomata closed, Ci 

increased and leaf temperature rose (figure 8.7). The cause of this behaviour was not 
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Figure 8. 7 Modelled response of canopy photosynthesis, stomatal conductance 

and leaf temperature to air temperature. 
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readily apparent, due to the many interacting feedback loops in the model. These loops 

were analysed using control theory as described below. 

8.3.1.3. Gain of the feedback loops involving photosynthesis, 
conductance and the leaf energy balance 

The feedback loop through the leaf energy balance is outlined in figure 8.8. Leaf 

temperature affects photosynthesis and leaf-to-air water vapour deficit, which both 

determine stomata} conductance, which in tum partitions available energy between 

evaporation and sensible heat and so determines leaf temperature completing the loop. 

There are two additional loops involving the feedback from photosynthesis and stomata! 

conductance via P;· 

Figure 8.8 Feedback loops of the leaf energy balance, photosynthesis (A), 

stomata! conductance (g) and intercellular C02 partial pressure (p~ as 

implemented in the canopy model. 

Control theory was used in the analysis of the behaviour of these loops. It examines 

the effect of perturbations to the system through use of partial differentials, calculated 

with other factors remaining constant. The stability of feedback systems is assessed by 

the loop gain, which is the amplification of a perturbation to a variable through the loop. 

Gains greater than 1 lead to the system becoming unstable, while a gain of zero means 

that no feedback occurs and a gain less than -1 can result in unstable oscillations, 

depending on the time lags in the system. Stable systems have gains between -1 and + 1. 

The A-p; loop gain (GA) was calculated as 
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(8.43) 

and theA-g-pi loop gain (Gg) was 

(8.44) 

The AID-g-T1 loop gain (Gr) was determined from the perturbation to A (dA) as 

dA=~ di;+~([~ dA+~I dgJ. MP; raP;lT, aAlg agiA 
(8.45) 

which was rearranged to 

(8.46) 

Similarly the perturbation tog (dg) was calculated as 

(8.47) 

Substitution for dA and rearranging lead to 

(8.48) 

Further substitution for dT1 and dD then lead to 

G = ai;(aA [~g + an[ag[ (1-G )J)1-G -G ). 11 a ar. aA ar. an A A g g I Pi D 1. A 

(8.49) 
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Evaluation of these equations as a function of temperature showed that none of the 

loop gains were greater than l (figure 8.9), meaning that system never became 

completely unstable. However, the abrupt decrease in A (figure 8.7) occurred at 

Ta = 34 °C, which also coincided with the maximum of Gr at Tl= 39 °C (figure 8.9). 

This maximum was not associated with the maximum G
8 

or minimum GA, but the most 

negative value of (aA!dTl)p;" This rapid decline in A in response to Tl was due to the 

modelled response of electron transport processes of photosynthesis to temperature. 
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Figure 8.9 Loop gains and partial differentials for the leaf energy balance, 

photosynthesis and conductance feedback loops. 

The leaf photosynthesis model (Farquhar et al., 1980) used here defines 

photosynthesis as the minimum of the Rubisco limited rate or the electron transport 

limited rate. In this analysis the change between limiting rates was smoothed 

mathematically by use of a non-rectangular hyperbola, 
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(8.50) 

where 8 (=0.98) is the curvature factor. This overcame problems of calculating partial 

differentials of discontinuous functions. 

While most of the leaves were light saturated and therefore had Rubisco limitations 

to their photosynthesis, when temperature increased the rate of electron transport 

declined to such an extent that they became electron transport limited. Electron 

transport was described in the model as having a temperature optimum of - 30 °C, above 

which it declined rapidly with further increases in temperature. The linkage between 

stomata} conductance and photosynthesis, used in this model, then caused the 

conductance to decrease rapidly, increasing leaf temperature, which combined with the 

high gain of this feedback loop, at T1 = 39 °C, caused the observed response of the model 

to temperature. Thus the loop involving feedback between the leaf energy balance, 

photosynthesis and conductance was causing the midday decrease in modelled 

photosynthesis and conductance. It was not a result of the choice of stomatal response 

function to humidity. 
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8.3.2. Sun/Shade Canopy Model 

8.3.2.1. Resistances 

Typical diurnal trends for the integrated leaf boundary layer (rb), within-canopy (r) 

and above canopy aerodynamic (ratm) resistances for the Sun/Shade canopy model are 

shown in figures 8. lOA & 8. lOB. ratm was a small component of total aerodynamic 

resistance (Ra) in both fractions. For both sunlit and shaded leaves Ra was dominated by 

rb, which was obtained by summing the individual leaf boundary layer resistances in 

parallel, so that as the proportion of leaves sunlit or shaded changed so did the 

partitioning of rb between the leaf fractions (figure 8. lOC). Hence rbsh was low at both 

ends of the day when all leaves were shaded and rbsun was high at the same time. r; was 

a small component for the sunlit leaves, but a larger component for the shaded leaves at 

both ends of the day. Comparing the aerodynamic resistances with the stomatal 

resistance (Re) it is clear that the physiological component is the dominant resistance 

(figures 8.lOD & 8.lOE). 

Comparison of resistances for a big-leaf representation of the canopy show that the 

physiological and aerodynamic components were comparable (figure 8. lOF). This 

occurred because stomatal resistances were added in parallel so that the canopy 

resistance was lower than the sun/shade components, whereas the big-lc:!af aerodynamic 

resistance was not directly comparable to the sun/shade resistances because it was 

calculated from assuming a single layer source at the notional canopy surf ace, d + z
0
H, 

and a logarithmic wind profile. 

The magnitudes of these resistances suggest that the scheme used to define the 

aerodynamic components is not very important. Canopy profiles of temperature, 

humidity or C02 concentration that develop will not greatly affect the model predictions, 

because the stomatal and leaf boundary layer resistances are larger than the within­

canopy or above-canopy resistances. Thus while these resistances were based on K­

theory to define the within canopy transport, any errors introduced by the invalidity of 

the use of K-theory are unlikely to have much impact. K-theory is also much simpler to 

use than the rigorous Lagrangian approach. 
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Figure 8.10 Components of the aerodynamic and physiological resistances and 

conductances in the Sun/Shade canopy model calculated for the 25-0ct. A and B 
aerodynamic components of resistances for the sunlit and shaded fractions of the 

canopy (Ra total, r; within-canopy, 'atm above-canopy, rb integrated leaf boundary 

layer resistances). C integrated leaf boundary conductances (Gbc total, Gbsh 

shaded fraction, Gbsun sunlit fraction). D and E stomata! and aerodynamic 

components of resistance for sunlit and shaded fractions respectively (Re and Ra>· 

F Total stomata! resistance (Re) and total 'big leaf' aerodynamic resistance (raH>· 
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8.3.2.2. Comparison with Multi-Layer model 

The Sun/Shade canopy model was evaluated by comparison with the Multi-Layer 

model, assuming that the latter gives an accurate representation of canopy fluxes. 

Photosynthesis, conductance, transpiration and sensible heat flux from sunlit and shaded 

leaves in the Multi-Layer model were aggregated separately to facil~tate comparison with 

the Sun/Shade canopy model (figure 8.11). 

Overall the agreement between the two models was very good for all the fluxes and 

conductances. Small differences between the models were observed but they were 

within acceptable limits. These differences possibly arose because the Multi-Layer model 

generated within-canopy profiles of D1• 
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Figure 8.11 Comparison of photosynthesis (A), conductance (g), transpiration (E) 

and sensible heat flux (H) from the sunlit and shaded fractions of the canopy as 

predicted by the Sun/Shade canopy model (lines) and Multi-Layer canopy model 

(symbols). The lines are sometimes obscured when the predictions from both 

models coincide. 
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8.3.2.3. Comparison with Big-Leaf model 

Predictions from the simpler Big-Leaf model were very close to those of the 

Sun/Shade canopy model, as the empirical curvature factor (0c = 0.94) of the Big-Leaf 

model was adjusted to give a good fit (figure 8.12). Predictions of photosynthesis from 

the Big-Leaf model were greater than the Sun/Shade canopy model at mid-morning and 

mid-afternoon, as expected from the analysis of these models in Chapter Six. As a result 

of the high photosynthesis, stomata! conductance was also overestimated by the simple 

Big Leaf model. However, the transpiration and sensible heat flux were not greatly 

affected, since they were not very sensitive to stomata! conductance with the conditions 

on this day. Differences between the models were greater when 0c was not fitted. 
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Figure 8.12 Comparison of photosynthesis (A), conductance (g), transpiration (E) 

and sensible heat flux (1-1) from the Big Leaf model (o) and the Sun/Shade canopy 

model(-). 
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8.3.3. Comparison with data 

Evaluation of the Sun/Shade canopy model was conducted from three perspectives, 

with different sources of parameter values. Firstly, parameters were derived from the 

canopy scale data by fitting the model. This allowed the model structure and 

assumptions to be assessed. Secondly, parameter values were derived from leaf-scale 

measurements, allowing evaluation of the model's suitability for scaling from leaves to 

canopies. Finally, parameter values were selected a priori, for situations when the model 

is used for predictive purposes. 

8.3.3.1. Parameters fitted to canopy data 

Parameter values from fitting the model to canopy data were given in Chapter Five 

for conductance and Chapter Seven for photosynthetic capacity. Model predictions, 

using fitted parameters for each day, were compared with the canopy data (figure 8.13). 

Conductance data, selected from periods when the canopy was dry to avoid high 

conductances from evaporation of dew and a few other anomalous data points, and all 

photosynthesis, transpiration and sensible heat flux data from each day were plotted. 

Available energy (Q) in the canopy model was determined by radiation reflection, 

interception and penetration components of the model. It matched the measured 

available energy (Rn - G) with an r2 = 0.92 (data not shown). Since radiation was the 

main driving variable for the model, the reproduction of the available energy provides a 

base line for comparison of the other components of the model. 

Overall, the model performed very well, accurately reproducing the canopy 

photosynthesis, transpiration, sensible heat flux and canopy conductance data. The 

observed scatter was due to random variations in the measurements, which were not 

reproduced by the model. The model showed no sign of curvature in the relationship 

between modelled and measured photosynthesis, thus supporting the validity of the 

model structure with sunlit and shaded leaves. 

8.3.3.2. Parameters fitted to leaf data 

In the second approach, for evaluating the model for scaling between spatial scales, 

parameters for the stomata} model and the photosynthetic capacity were obtained from 

301 



Chapter Eight 

the leaf data for each day. Modelled canopy fluxes using leaf derived parameters are 

plotted against the canopy data in figure 8.14. 
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Figure 8.13 Comparison of model predictions and data, using parameters 

obtained from canopy scale measurements. 

Stomatal conductance was much more variable when the leaf-scale parameters were 

used, than when the canopy-scale parameters were used in the model (cf. figure 8.13). 

This was probably due to the limited range of data that were available at the leaf scale, 

thus preventing a more accurate determination of the stomatal response to humidity, 

whereas at the canopy scale a greater range of D1 was available for fitting the model. 

Despite the increased variability of stomatal conductance, there was no systematic bias. 

Photosynthesis was overestimated by about 5 µmol.m-2.s-1 by the model using the leaf 
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scale parameters, with a little more scatter. As a result of the increased variability of 

stomata} conductance, the transpiration estimates were considerably more variable, but 

without any systematic bias. Similarly, the sensible heat flux had more scatter. Model 

predictions from any individual day were consistently off set from the data for the whole 

day; the magnitude of the offset depended on the particular parameter values of that day. 
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Figure 8.14 Comparison of model predictions with data, using parameters for 

each day obtained from leaf scale measurements. 

8.3.3.3. Parameters from all data combined 

All the leaf-scale data were pooled and used to fit the stomatal conductance model 

and determine the average leaf photosynthetic capacity. These parameters were then 

used in the model for predictive purposes, but did not vary between days. This is typical 
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of situations where the parameters describing gas exchange of different vegetation types 

would be assigned with no day-to-day variability of the parameters. A comparison of the 

model predictions, using this parameterisation scheme, with measurements is shown in 

figure 8.15. 

Measured A (µmol.m-2.s-1) Measured g (mol.m-2.s-1) 

0 10 20 30 0.0 0.6 1.2 1.8 - 40 1.8 ~ 

~ I en 
0 

C}I a. 
E 30 

CD - m 0 1.2 E a. 
:i (Q - 20 -'<::( DJ 3 

"O 0 
Q) 0.6 3 
Q) 10 !{) 

"O Cn 0 I 

::? 
..... -0 0.0 

- 400 
~ 
0 

C}I a. 
E CD 

~200 
8 CD 

a. 
:r: ni 
"O -3 Q) 

4 3 Q) 0 0 "O 
0 3 ::? a 

!{) 
a a Cn -200 

cf a 
0 I 

-200 200 400 0 4 8 12 
..... -

Measured H (W .m-2) Measured E (mmol.m-2.s-1) 

Figure 8.15 Comparison of model predictions with data, using parameters 

obtained from leaf scale data with all days data combined and assuming a single 

value for the leaf photosynthetic capacity. 

Under this parameterisation scheme, canopy photosynthesis had more scatter than 

when parameters for each day were used and showed a tendency to underestimate high 

rates, but overestimate low rates. Stomatal conductance was not predicted very well, 
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particularly at high conductances. This suggests that the relationship between stomata} 

conductance and photosynthesis utilised in this model was changing in ways that were 

not accounted for by using a single relationship for all days. The cause of this variability 

was probably declining soil water content and encroaching drought. Despite the poor 

prediction of stomata! conductance, transpiration was still fairly well predicted, indicative 

of the insensitivity of transpiration to stomata} conductance for this canopy. 

8.3.4. Canopy Responses to C02 

The Sunlit/Shaded canopy model was used to predict canopy responses to altered 

atmospheric C02 concentrations through its effect on leaf photosynthesis and stomata! 

conductance (figure 8.16). With all other parameters held constant, daily canopy 

transpiration decreased and gross photosynthesis increased with rising atmospheric C02 

concentration. The ratio of photosynthesis to transpiration (AjEd), or transpiration 

efficiency, increased even more rapidly with rising C02• From 0.8 to 2 times measured 

C02 concentrations the response of Ad and Ed was nearly linear. The measured average 

C02 concentration was 328 µmol.mol- 1, which is lower than the atmospheric average due 
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Figure 8.16 Effect of atmospheric C02 concentration on daily canopy fluxes of 

C02 and water vapour. Data were generated using the Sun/Shade canopy model 

using the atmospheric conditions of the 25-0ct (Le = 2.41 m2.m-2). The arrow 

marks the measured C02 concentration at canopy height of the original data (c8 = 
328 µmol.mol-1). 
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to the draw-down caused by the uptake of C02 by the crop. 

The interaction between C02 concentration and canopy leaf area was examined by 

predicting the effect of doubling C02 concentration on daily photosynthesis and 

evaporation over a range of canopy leaf areas (figure 8.17). Changing canopy leaf area 

affects the amount of radiation absorbed by the canopy and the penetration of radiation 

to the soil. In this simulation I assumed the soil was moist and that soil evaporation was 

at the equilibrium evaporation rate determined from the radiation penetration through the 

canopy. I further assumed canopy respiration to increase in proportion to canopy 
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Figure 8.17 Comparison of the effect of 2 x C02 concentration (- - -) with ambient 

C02 levels(-) on canopy transpiration (Ee;), total evaporation (E-rl, gross canopy 

photosynthesis (Ac;), net canopy C02 flux (Anet), transpiration efficiency (Acf Ec;) 
and water-use efficiency (An8 /E-rl over a range of canopy leaf areas; with 

(symbols) and without (lines only) soil fluxes. Also shown is the ratio of fluxes and 

efficiencies at 2 x C02: ambient C02. Soil evaporation (Es) was unaffected by 

C02 concentration. Data for the simulation were from 25-0ct, with ambient C02 

concentration of 328 µmol.mo1·1• 
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photosynthetic capacity. No effect of elevated C02 concentrations on canopy respiration· 

were included as it is unclear what response, if any, may occur. Similarly, no acclimation 

of photosynthesis to elevated C02 was included in the model. 

Total evaporation (Er) decreased only slightly in canopies with low leaf area because 

of the increasing contribution of soil evaporation and even less at 2 x C02• Net canopy 

C02 flux (Anet) did not increase with leaf area greater than 4, due to canopy closure and 

increasing respiration with further leaf area. 2 x C02 caused canopy transpiration (EJ to 

decrease by 20% at all leaf areas, while the effect on total evaporation (Er) was only 

slightly less, particularly at low leaf area where the contribution of soil evaporation was 

not affected by C02 concentration. Gross canopy photosynthesis (Ac) was enhanced 1.46 

times by 2 x C02, and net photosynthesis (Anet) by 1.6 times. 

The effect of leaf area and 2 x C02 on water-use efficiency differed from the effect 

on transpiration efficiency. While transpiration efficiency (A/Ee) was relatively constant 

across the range of canopy leaf areas at both ambient and 2 x C02, water-use efficiency 

(Ane!Er) increased dramatically as canopy leaf area increased up to a leaf area of 4, due 

to decreasing soil evaporation. The enhancement of transpiration efficiency by 2 x C02 

approached 2 at low leaf area and decreased with increasing leaf area to 1. 7, due to the 

diminishing response of Ac to C02 with increasing leaf area. In contrast water-use 

efficiency was enhanced by 2 x C02 by a factor of 1.7 at low leaf area and increased with 

increasing leaf area up 1.9 times, due to the increasing reduction of Er at double C02 

with increasing leaf area. 

The enhancement of water-use efficiency by an average factor of 1.8 agrees with 

experiments of elevated C02 on gas exchange of cotton plants (Wong, 1979) where A/E 

was enhanced by 1.8 to 2 fold by a 1.94 times increase in C02 concentration, and on a 

eucalyptus forest canopy (Wong & Dunin, 1987) where A/E increased 2 fold with 2 x 

C02• 

While this model does demonstrate the effect of C02 on canopy physiology and the 

partitioning of energy between latent and sensible heat, it does not include the full 

secondary effects of altered canopy leaf area or prevailing air conditions of temperature 

and humidity. Conditions at the reference height were assumed to be unaffected by the 

underlying surface. Canopy boundary layers only affected the air beneath the reference 

height and within the canopy. Decreased evaporation at high C02 concentrations due to 

reduced stomatal conductance may cause higher air temperature and lower air humidity 
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at the reference height, thus offsetting the effect of lower conductance on evaporation 

rate. However, total evaporation and transpiration was reduced by only 20% at 2 x C02 

so that this feedback may not have a large impact. These effects could be included if 

their response to C02 concentration was known. 

8.3.5. Scaling Transpiration Efficiency 

Scaling of transpiration efficiency from leaves to canopies was examined with the 

sun/shade canopy model by calculating daily canopy transpiration (Ee), gross canopy 

photosynthesis (Ac) and their ratio (A/Ee) (figure 8.18). Stomatal conductance was 

varied by altering the coefficient (a1) in the model of stomatal conductance, g = g
0 

+ 

a1Al((c + r)(k + D)). The same coefficients and data as for the canopy were used to 

calculate daily leaf transpiration efficiency and the photosynthesis-weighted average leaf 

conductance of a horizontal leaf at the top of the canopy, which was used as the x­

ordinate in figure 8.18. 
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Figure 8.18 Modelled daily canopy transpiration (Ee;), gross canopy 

photosynthesis (Ac) canopy transpiration efficiency (AJEc;) and leaf transpiration 

efficiency (A/El with varying stomata! conductance (gl of a horizontal leaf at the 

top of the canopy. Diurnal variation of light, wind speed, air temperature, humidity 

and the coefficients for the model were obtained from the Bowen ratio flux data of 

Matong on 25-0ct, k = 24.07, Le = 2.41 and V1 = 93. Stomata! conductance was 

calculated as the photosynthesis weighted average for the day. Averages for 

10:00 - 14:00 were T8 = 20°C, w8 = 12.6 mmol.mo1·1 and g8H= 1.18. 
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Transpiration efficiency was more responsive to changing stomatal conductance at 

the leaf scale than at the canopy scale, which was expected due to the additional 

boundary layer conductance at the canopy scale. The difference in the response of 

transpiration efficiency between the leaf and canopy scale was not as large as might have 

been expected. On days with lower wind-speeds the boundary layer conductance would 

be reduced and the difference in transpiration efficiency at the leaf and canopy scale 

would be greater. On hotter days, with higher leaf-to-air water vapour concentration 

differences (eg. 30-0ct), transpiration efficiency was lower, but the response to varying 

conductance was still greater at the leaf than at the canopy scale. 

The sun/shade canopy model was also used to simulate the variation of transpiration 

efficiency in response to varying leaf photosynthetic capacity (figure 8.19), which_ was 

similar at both the leaf and canopy scale as expected. The feedback effect of the canopy 

boundary layer was expected to have less effect when photosynthetic capacity was 

changed than when stomatal conductance was changed, because the canopy C02 fluxes 

are small in comparison to the atmospheric concentration (A/ca= 25/330) causing only a 

small draw-down in C02 concentration, whereas the H20 (and heat) fluxes are large 

(E/wa = 10113) causing significant increase in humidity (and temperature), which affect 

the concentration gradient and hence feedback on the fluxes. 
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Figure 8.19 Modelled daily canopy transpiration (Er;), gross canopy 

photosynthesis (Ar;) canopy transpiration efficiency (ArfEc} and leaf transpiration 

efficiency (A/ E~ with leaf photosynthetic capacity (Vi) of a horizontal leaf at the top 

of the canopy. Data and coefficients as in figure 8.18. 
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8.4. Further Discussion and Conclusions 

8.4.1. Sun/Shade canopy model 

The Sun/Shade canopy model presented here performed as well as a multi-layer 

model and accurately reproduced diurnal changes of canopy fluxes. It performed better 

than a single-layer Big-Leaf model, which overestimated canopy photosynthesis at 

intermediate light levels. Other attempts at using single-layer big leaf models to describe 

canopy photosynthesis have involved either fitting the model to data (Lloyd et al., 1995) 

or have used empirical scaling coefficients to tune the model to the data (Johnson et al., 

1989; Amthor et al., 1994). While both these approaches are valid when using the 

models to explain or reproduce data sets, they are of limited value if the models are to be 

used for predictive purposes, such as investigating the response of vegetation to climate 

change when canopy leaf area or nitrogen content may change (see Chapter Six). Under 

such altered environments the empirical coefficients and fitted parameters of Big-Leaf 

models change, but in what manner it is difficult to say a priori. The Sun/Shade canopy 

model has the advantage that it is based on leaf scale processes that have been integrated 

to the canopy scale without the use of scaling coefficients (other than canopy leaf area). 

The response of leaf gas exchange to light, humidity, temperature, C02 concentration, 

nutrition and leaf age can all be explained by the Farquhar et al. ( 1980) model of 

photosynthesis, which can confidently be used to scale these responses to the canopy 

level. These models do not, however, consider secondary effects of acclimation of 

photosynthesis to either altered C02 concentration (Sage, 1994) or temperature (Berry 

& Bjorkman, 1980), nor the response of respiration to elevated C02 (Amthor, 1991). 

When the nature and extent of acclimation become clearer these effects could also be 

included. 

The choice of parameters for the model does affect its performance. Fitting the 

model to the data worked well, which is reassuring but not surprising. However the day­

to-day variation of the parameters can not yet be completely explained (as discussed in 

Chapters Four, Five and Seven). 
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8.4.2. Leaf temperature and free convection 

Inclusion of the effects of free convection on leaf boundary layer conductance had a 

significant effect, reducing some leaf temperatures by up to 3 °C. These effects would be 

even greater in a canopy with leaves bigger than those of the canopy in this study 

(0.02 m). Omission of this phenomenon from canopy models could lead to significant 

errors. 

It is apparent from the multi-layer model, which considered many leaf angle classes, 

that the temperature of leaves at the top of the canopy can vary by as much as 6 °C 

depending on their orientation to the sun and by as much as 10 °C for leaves at the 

bottom of the canopy. Despite this large variation in leaf temperature the Sun/Shade 

canopy model which aggregated the leaves into only two classes, was still able to 

reproduce canopy transpiration and sensible heat flux. This suggests that averaging over 

non-isothermal surfaces may not be a problem, and that this type of model could be used 

for averaging over patchwork landscapes with different energy balances (Raupach, 

1995). 

8.4.3. Response of photosynthesis to temperature 

Linking stomatal conductance to photosynthesis had many advantages in that 

responses to temperature, light, leaf nutrition and age were all accommodated. 

However, the modelled response of photosynthesis to high temperature caused 

unrealistically low stomatal conductances, with consequent extreme leaf temperatures. 

This phenomenon was not caused by the type of stomatal response to humidity. Further 

work needs to be done to explore the decline of photosynthesis at high temperatures and 

its relationship with stomata} conductance. 

8.4.4. Sensitivity of Transpiration Efficiency to Leaf Properties 

It has been suggested that where improved transpiration efficiency at the leaf scale 

arises from reduced conductance rather than greater photosynthetic capacity that the 

benefit would be diminished at the canopy scale due to feedback effects of the canopy 

boundary layer (Farquhar et al., 1989b). This was confirmed by the model predictions 

presented in this chapter. Benefits to transpiration efficiency from greater photosynthetic 

capacity were predicted to be equally beneficial at the canopy scale as the leaf scale. 
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Although transpiration efficiency was nearly constant across a range of canopy leaf 

areas, water-use efficiency (including soil fluxes) increased dramatically up to canopy 

closure (Le= 4). These effects of different leaf area on water-use efficiency were much 

greater than the benefits from reduced stomatal conductance or greater photosynthetic 

capacity. Thus any attempt to improve water-use efficiency of crops by altering leaf 

physiological traits needs to ensure that canopy leaf area is not adversely affected. 

Similarly, canopy responses to elevated atmospheric C02 are more sensitive to changes 

in canopy leaf area that may occur, than to the direct effects on physiology. 
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8.5. Appendices 

8.5.1 . Derivation of the combination equation with isothermal 
net radiation. 

The water vapour flux is given by 

(8.51) 

where w is the water vapour concentration (mol.mol-1) of intercellular air spaces (w) and 

ambient air (wa) outside the boundary layer of resistance rb. rs is the stomatal resistance. 

The sensible heat flux (H) is given by 

(8.52) 

where CP is the molar heat capacity of air, rbH is the boundary layer resistance to heat 

transfer and f).T is the difference between leaf temperature and air temperature outside 

the boundary layer (T1- Ta). Available energy (Q) can be expressed as 

(8.53) 

where Q
0 

is the isothermal radiation (available energy if leaf temperature were equal to 

air) and the last term accounts for the radiation exchange as a result of the difference 

between leaf and air temperatures. Introducing the concept of radiative conductance (gr 

= 4cre/I'3/CP), the above equation can be rewritten as 

(8.54) 

Rearranging eq. 8.5 to obtain f).T and using the energy balance (Q = H +LE) results in 

(8.55) 

which substituting for Q using eq. 8.54 results in 
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(8.56) 

where gbH is the boundary layer conductance to sensible heat transfer (llrbH) and r*bH is 

the combined resistance to sensible and radiative heat transfer in parallel (ll(gbH +gr)). 

Using the approximation of wi = w'a + (s!P)tiT, where w' is the saturated vapour 

concentration and s is the change in saturated vapour pressure with temperature 

(dw'Pldn, the combination equation is derived from eq. 8.51, and combined with the 

expression for tiT (eq. 8.56), 

(8.57) 

Defining D as the vapour concentration deficit of air (w'a - wa) and E as sL!(CPP), the 

above equation can be rearranged to give, 

E = (c/ L)rb"iQ, -LE)+ D. 

r, +'i, 

Collecting terms of E, gives 

which can be rearranged to 

E = crb"HQjL+.D. 
r, + 'i, +E'i,H 

8.5.2. Leaf temperature with isothermal radiation. 

(8.58) 

(8.59) 

(8.60) 

Combine expressions for tiT (eq. 8.56) with the above isothermal combination 

equation, 
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(8.61) 

which simplifies to 

(8.62) 

8.5.3. Derivation of a two layer evaporation model with molar 
units. 

Adding eqs. 8.16 & 8.17, multiplying by the denominators gives 

LE{ '::sun + raSun + era~un )( rcSh + rash + er :sh) 

= (era~unQ,Sun + L(Dx -E(E + l)rarm)+EratmQXr::sh +rash +Et;,~h) · 

+( Et;,~liQ,Sh + L( DX - E( E + 1 )ratm) + EratmQ x '::sun + raSun + Era~un) 

(8.63) 

Collecting terms of LE and simplifying with the definitions; Rsun = rcsun + rasun + Er*asun' 

Rsh = rcsh +rash+ Er* ash and Ra= (E + l)ratm gives 

(8.64) 

This equation can be rearranged so that both components of the RHS converge to a 

Penman-Monteith type equation when either Rsun or Rsh are infinite, so that 

(8.65) 

where the terms are given as 

(8.66) 

(8.67) 
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(8.68) 

(8.69) 

8.5.4. Isothermal radiation in the Sun/Shade canopy model 

The energy available (Q) for evaporation consists of several wavelength components 

that are differentially absorbed by canopies; photosynthetically active radiation (PAR, 0.4 

- 0.7 µm), near infra-red (NIR, 0.7 - 3.0 µm) and long-wave (L, 3 - 100 µm). The 

reflection, transmission and absorption of PAR and NIR have been treated earlier and 

can be summarised as 

. (8.70) 

where /PAR and INIR are the net absorbed PAR and NIR radiation, Ld and Lu are the long­

wave radiation from the sky and the canopy respectively andfcsky is the fraction of long­

wave radiation from the sky absorbed by the canopy. Canopy interception of long-wave 

radiation is calculated assuming an isothermal sky of uniform emittance, so that it is 

intercepted by the canopy in a similar manner to diffuse visible radiation, but assuming 

total absorption by the leaves. fcsky is obtained by integrating the absorption profile of 

diffuse radiation over the whole canopy 

(8.71) 

where kd (0.78) is the diffuse radiation extinction coefficient for a canopy of uniform leaf 

angle distribution and a uniform radiance from the sky. 

Separating long-wave radiation absorption into sunlit and shaded leaf fractions of the 

canopy is achieved by integrating with the profile of leaf area in sunfleck given by the 

extinction of beam radiation, exp(-kbL). kb is the beam extinction coefficient which 

varies with solar elevation, ~. such that kb = 0.5/sin~, for a canopy with uniform leaf­

angle distribution. Long-wave radiation absorption by the sunlit fraction of the canopy is 

given as 
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hskysun = re kd exp(-kdL )exp(-kbL )dL 

= (t-exp(-(kd + kb)Lc)~d/(kd +kb) 
(8.72) 

Long-wave radiation absorption by the shaded fraction of the canopy is determined by 

difference, fcskysh = fcsky - fcskySun· The long-wave radiation absorption is incorporated 

into the definition of isothermal radiation so that 

(8.73) 

and the radiative conductance is 

(8.74) 

Similar expressions for isothermal radiation and radiative conductance of sunlit and 

shaded fractions of the canopy are used, where fcsky is replaced by either fcskysun or fcskysh 

respectively. 
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Advection between Crops with Different Conductances 

Summary 

Advection is the variation of vertical fluxes with distance downwind from the 

interface between two surfaces with contrasting properties. At the interface of a change 

in surface properties air in the canopy boundary layer is modified by the new surf ace and 

takes some distance before a new equilibrium is reached. At the interface this process of 

re-equilibration is apparent as horizontal gradients of temperature, humidity, turbulence 

or fluxes depending on the change that has occurred. 

Assessment of crop water use in small plots with contrasting evaporation rates is 

affected by advection as the plots are too small to allow complete equilibrium between 

the surface and the air. Canopy boundary layers affect the evaporation rate of crops, but 

it is unclear how large the effect of advection is on water use of small plots. Two 

varieties of wheat, with inherently contrasting conductances, were grown in extensive 

adjacent paddocks. This provided the opportunity to assess horizontal gradients of air 

temperature, humidity and surface radiative temperature with a set of sensors travelling 

across the interface between the crops. Additional measurements of wind speed allowed 

the resolution of the energy balance- into latent and sensible heat fluxes along the 

transect. 

On several days wind came over the canopy with high conductance across the 

interface and into the crop with low conductance, allowing analysis of advection across a 

transition from high to low conductance. Bowen ratio measurements of the fluxes in the 

centre of each extensive paddock showed the canopy with high conductance to have 

10% greater latent heat flux than the canopy with low conductance. Transect 

measurements showed a 0.5°C increase in air temperature measured 0.25 m above 

canopy height, but no detectable increase in humidity. Surface radiative temperature 

increased l.5°C and leaf-to-air vapour concentration difference increased 2 mmol.mol-1• 

Sensible heat flux increased by 30% and latent heat flux decreased by 10% at the 

interface, but did not show significant change with distance downwind from the leading 

edge. Calculated canopy conductance and evaporation rate at the surface also showed a 

step change and indicated some readjustment in the first 10 m from the interface. 

Footprint corrections reconciled the variation of fluxes along the transect measured 

above the canopy and at the surface. Horizontal gradients of air and surface temperature 

indicated that advection was indeed occurring, but that it had minimal impact on the 

evaporation rate in this case. 
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9.1. Introduction 

Productivity in dryland agriculture is limited by water supply (French & Schultz, 

1984). Improvements in crops' efficiency of using the limited water resource has recently 

received much attention (Ehleringer et al., 1993). However, it has long been recognised 

that interactions between the vegetation and the overlying atmosphere moderate the 

extent to which water use can be manipulated. Canopy boundary layers cause the air 

immediately adjacent to the crop surface to be modified by the energy balance of the 

crop; typically becoming warmer and more humid than the ambient air well above the 

crop. The effect of the canopy boundary layer is to reduce the sensitivity of evaporation 

to changes in stomatal conductance (Jarvis & McNaughton, 1986). Air in the boundary 

layer above an extensive area of uniform vegetation develop temperature, humidity and 

C02 fields which are in equilibrium with the surface exchange of heat, water vapour and 

C02 and are horizontally uniform. 

Plant breeders regularly use small plots (2 x 5 m) to assess new selections of plant 

cultivars, due to the large number of lines to be assessed. If small plots have different 

rates of evaporation, due to either different water regimes, leaf area, or siomatal 

conductance, then the layer of air adjacent to the crop surface will not be fully adjusted 

to the evaporation rate of the underlying surface, thus limiting the validity of the results 

in terms of assessing water use that would occur in an extensive paddock. Knowledge of 

the magnitude of these effects and theories to predict them will allow the validity of small 

plot experiments to be assessed. 

Changes in air humidity and temperature following a step change in surface 

characteristics are described by the development or modification of the canopy boundary 

layer and the evolutionary process is called advection. Several theories have been 

developed and numerical simulations used to describe advection, as recently reviewed by 

ltier et al., (1994) and Garratt (1990). Experimental observations of advection are very 

limited and have usually been made at the interface of very contrasting land surfaces 

(Rider et al., 1963 tarmac to grass; Millar, 1964 dry land to irrigated clover; Davenport 

& Hudson, 1967 dry fallow to irrigated barley; Lang et al., 1974 dry land to wetland 

rice; Brunet et al., 1994 dryland to irrigated barley). While experimental observations 

are consistent with models of advection, the models are not sufficiently proven for 

predictive purposes (Itier et al., 1994). 
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Observations of advection between crops with less dramatic, but more realistic, 

differences in transpiration rates have not been made. These types of measurement are 

very demanding on instrument accuracy, as the vertical variation is much greater than the 

horizontal gradients associated with advection. 

A large project was established to assess water-use efficiency of two cultivars of 

wheat, Matong and Quarrion, with contrasting water-use efficiencies due to their 

inherently different stomatal conductances. The cultivars were grown in adjacent 

paddocks, providing a continuous canopy, with a step change in stomatal properties. A 

system of moving sensors was built along a transect across the interface between the two 

crops, allowing direct measurement of the horizontal variation of air temperature and 

humidity and surface radiative temperature with the same set of sensors. 

This chapter describes the measurements along the transect. They are used to test 

the hypothesis that extensive paddocks are required to make realistic assessment of plant 

attributes that affect water-use of crops. The hypothesis is tested by examining the 

advection across the interface of two wheat crops with contrasting stomatal properties 

and assessing its effect on canopy transpiration. 
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9.2. Methods 

Details of the field site, agronomy and equipment used for the observations presented 

in this chapter were given in Chapter Two. A brief outline is given below. 

Two cultivars of wheat, Matong and Quarrion, were grown in 1990 in adjacent 5 ha 

paddocks. Stomata! conductance of Quarrion was typically 40% lower than of Matong, 

which (together with differences in leaf area) resulted in slightly lower rates of 

evaporation and total water use over the season (Chapter Three). 

A system of moving sensors, the 'monorail', was built across the interface between 

the two crops, 28.75 m into Quarrion and 30 m into Matong (figure 9.1). 

Quarrion N 

i 
: Transect 

Ma tong 

Figure 9.1 Layout of the wheat crops and the transect 

(not to scale). 

The monorail had sensors for air temperature at 0.25 m and 0.50 m above the top of 

the crop and a humidity sensor at 0.25 m above the crop. Two surface radiative 

temperature sensors (30° view angle) were mounted at 0.77 m above crop height and 

pointed down at an angle of 45° due east and west. Data were recorded in both 
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directions every 1.68 m along the transect. A single transect required approximately 4 

minutes for a single transect (0.23 m.s-1) and a similar time in reverse. 

Data were filtered post-collection to delete erroneous numbers, which occurred 

primarily in the data transmission via radio and RS-232 serial line. Data were further 

filtered by rejecting whole transects when net radiation varied more than 10% from the 

run average to avoid the effect of clouds and non-stationarity. Data were averaged over 

five metre intervals and over periods of one hour to provide sufficient points to detect 

the expected small horizontal variations. 

9.2.1. Flux calculations 

Wind speed was assumed to follow a log profile 

u -u =-In - 2
--u... (z -dJ 

z2 Z1 k z, -d ' 
(9.1) 

where uzi and uz1 are the wind speeds at heights z2 and z1, u. is the friction velocity, dis 

the zero displacement plane in the canopy (the notional surface where wind speed is 

zero) and k is von Karman's constant. Wind speed measurements at 0.25 and 0.50 m 

above canopy height were used to calculate the friction velocity, 

(9.2) 

The diffusivity of momentum (KM) is assumed to be given as, KM = ku.(z - d), so that the 

resistance to momentum transfer from heights z2 to z1 is 

(9.3) 

where RT ,/P converts from resistance units of s.m-1 to m2s.moI-1, R is the universal gas 

constant, T K is temperature in Kelvin and P is atmospheric pressure. I assumed that the 

diffusivities and resistances to transfer of momentum, heat and water vapour are equal 

(KM= KH = Kv, raM = raH = rav) and that stability corrections were similar for both crops, 

but ignored as they are probably diminished close to the surface (Brutsaert, 1982). 
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Sensible heat flux (H) is the product of aerodynamic resistance (raH) calculated as 

above, and the measured difference in air temperature over the same height interval, 

(9.4) 

where CP is the molar heat capacity of air. The energy balance was used to calculate the 

latent heat flux (LE) 

LE=~-G-H, (9.5) 

from ground heat flux ( G), which was measured in the centre of each paddock and 

assumed to be constant for each crop along the transect, and net radiation (Rn) measured 

above the Matong crop, adjusted for the variation in emitted long-wave radiation (Lu) 

along the transect, 

(9.6) 

where Ee is. the long wave emissivity of the crop (0.98), cr is the Stefan Boltzmann 

constant (5.67x10-8 W.m-2.K4 ) and TKis the surface temperature along the transect. 

Strictly, the fluxes calculated from the temperature and wind profiles above a crop 

are only valid for equilibrium conditions, when the airstream is fully adjusted to the 

surface beneath. Following a change in surface properties the zone of modified air 

(blending height), Z,JX, increases in proportional to uJu(z) and the layer of air fully 

adjusted to the surface (internal boundary layer), Z/X, increases in proportion to 

x(uJu(z))2 (Raupach & Finnigan, 1995). With the measured ratio of uJu = 117, the 

footprint for fluxes over the height interval of 0.25 - 0.50 m above the canopy was 

calculated to range from 2 - 25 m upwind. It follows that fluxes calculated from the 

temperature and wind speed profiles, will be fully representative of the upwind crop until 

approximately 2 m fetch into the downwind crop and that only at the extreme downwind 

end of the transect will the flux be representative of the downwind crop. In conditions of 

strong local advection fluxes calculated from profiles would be distorted by the non­

equilibrium conditions. In the anticipated conditions of weak advection in this study, the 

errors may not be too large, although they will not truly reflect the actual fluxes. Despite 

these problems, fluxes have been calculated from the profiles and are compared with the 

surf ace fluxes. 
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Surface fluxes can be compared with fluxes calculated over the interval 0.25 - 0.50 m 

above canopy height, by using a weighted averaging scheme for the footprint area of that 

height. A footprint distribution, similar in shape to that calculated by Schuepp et al. 

(1990), was used to weight the surface fluxes (Table 9.1). 

Table 9.1 Footprint weighting scheme to relate 

surface fluxes to fluxes measured over the interval 

of 0.25- 0.50 m above canopy height. 

Distance upwind (m) 
0 

-5 
-10 
-15 
-20 
-25 

Total: 

Weighting 
0.00 
0.20 
0.40 
0.25 
0.10 
0.05 
1.00 

The downwind distance from the interface between the crops, or fetch (x), was 

calculated from the average wind direction ( e ) and the location of each data point along 

the transect (l), 

x = l/cose, (9.7) 

which was calculated for each data point by vector resolution of the wind speed (u) and 

direction over the preceding three minutes, 

I 

I,usin8 
e = atan -'-1--"

3---
1 

I,ucose 
t-3 

(9.8) 

Averaging periods were selected so that wind direction did not change significantly 

during each period. This resulted in the wind direction being a scaling factor to convert 

from location to fetch, but did not alter the spatial distribution of the data. 
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9.2.2. Canopy Conductance 

Variation of canopy conductance (gc) along the transect was modelled with the 

Leuning (1995) modified Ball-Berry model of stomata! conductance (Ball et al., 1987), 

as applied to canopies (Chapter Five), 

(9.9) 

where g
0 

is intercept of the regression model representing non-stomatal conductance to 

water vapour transfer, Lc is canopy leaf area index, a1 is the slope of the regression 

model, Ac is gross canopy photosynthesis (calculated from measurements as discussed in 

previous chapters), ca is measured C02 concentration at the top of the canopy, r is the 

C02 compensation point of leaf photosynthesis calculated from an Arrhenius function of 

measured leaf temperature (activation energy of 38.8 kJ.mol-1) and k is a fitted 

coefficient of the stomata! model. Values of the coefficients for the respective canopies 

were given in Chapter Five. In the calculations of canopy conductance, Ac and ca were 

assumed to be constant for each canopy along the transect, although in fact a small 

feedback from conductance to photosynthesis does occur, which was ignored. 

A second estimate of evaporation along the transect was calculated from gc by the 

diffusion equation, 

(9.10) 

where gaH is the aerodynamic resistance to sensible heat transfer from the surface to 0.30 

m above the canopy, calculated from measurements of u. with corrections for the 

additional resistance to heat transfer compared to momentum and the effect of 

atmospheric stability, as discussed in Chapter Five. 
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9.3. Results 

The time response of the sensors combined with their movement along the transect, 

could potentially create a lag in the data in relation to their position of measurement. 

Such a lag would appear as hysteresis in the data collected from north runs compared to 

south runs. Data were averaged separately for north and south runs for many data sets; 

an example from 18-0ct 13:00-14:00 is shown in figure 9.2. No hysteresis was detected 

18-0ct 13:00-14:00 
29 

24 26 24 22 26 20 23 23 24 32 24 n(N) 

28 -() 
0 -1-<l:l 27 ~N 

Matong Quarrion -0-S 

26 
23 33 24 20 24 24 30 20 24 22 22 n(S) 

-..... 0 15 E 
0 
E 
E 14 -~<13 

13 

31 

-() 30 0 -i--
29 

28 
-30 -20 -10 0 10 20 30 

Location (m) 

Figure 9.2 Spatial variation of air temperature (T8 ), humidity (w8 ) at 0.25 m 

above crop height and surface radiative temperature ( ~ with the sensors 

travelling north (N) and south (S). Standard errors are shown as error bars. The 

number of data points (n) at each location is shown separately for the North and 

South runs. 
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consistently in either air temperature, humidity or surface radiative temperature for 

different wind conditions. Different canopy densities (leaf area index) of the two crops 

may have resulted in different amounts of soil surf ace being seen by the infra-red sensors. 

The higher surface radiative temperatures of Quarrion may be partly attributed to its 

lower leaf area index (see Chapter Three) and higher soil surface temperatures as a result 

of greater radiation penetration to the soil. 

Data were collected over many days in the weeks before and after anthesis, but not 

all with suitable wind speed and direction. Data from the 12-0ct and 24-0ct had 

southerly wind, and the 18-0ct and 30-0ct had northerly wind. Other days had very 

light winds, winds from the east or west, or patchy clouds. 

9.3.1. Transition from High to Low Conductance 

Data of 12-0ct, 9:00-10:00 

North 
Wnd Speed (ms ·1

} 12-0ct 

West East 

South 

Figure 9.3 Diurnal variation of wind speed (0.5 m above crop height) and 

direction on the 12-0ct. 
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On 12-0ct the wind blew from the south coming over the Matong crop with higher 

conductance and then over the Quarrion crop, with low conductance. Variation of wind 

speed and direction is shown in figure 9 .3. 

The energy balance of the crops measured by the Bowen ratio system in the centre of 

each paddock was different, with Matong having a greater flux of latent heat and lower 

flux of sensible heat than the Quarrion crop (figure 9.4). 

cr--
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3: -(!) 
I 

a:c::: 200 

er-- 100 
E 
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" I 

-1\ttitcnJ 
- - - - Q.Janiai 
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I .... - \ 

--M:lt~ 

- - - - OJarriai 
-100 1--__ __._ ___ ..._ __ _.... __ ---f 
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00 00 12 15 18 
Time of Day 

Figure 9.4 Available energy (R-G), sensible heat flux (HJ and latent heat flux (LE) 

of the Matong (-) and Quarrion (- - -) crops on 12-0ct, measured with Bowen 

ratio systems. 
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Analysis of the net radiation (Rn) measured in conjunction with the monorail revealed 

that high cloud was present, causing large variation in Rn, that was not apparent in the 

fifteen minute averages of the Bowen ratio data (figure 9.5). 

800 
12-0ct Monrail data 

600 

~ 
'E 
~ 400 -a:c: 

200 

09 12 15 
Time of Day 

Figure 9.5 Diurnal variation of net radiation (Rn) measured at six second intervals 

in conjunction with the monorail data collection on 12-0ct. · 

Data from between 9:00 and 10:00 were suitable for analysis, after removing a few 

runs when clouds were present (figure 9.6). Air temperature (Ta) increased, as expected, 

as the air was influenced by the Quarrion crop with lower conductance. Air humidity 

(wa) decreased over Quarrion, but it was no greater than the variation observed over 

Matong. There was a significant increase in surface temperature (T1) over Quarrion 

compared to Matong, but again there was considerable spatial variation that was not 

associated with the interface between the crops. The net effect on the leaf-to-air vapour 

concentration difference (D1 = ws(T1) - wa) was that it increased substantially over the 

Quarrion canopy. 
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Figure 9.6 Variation of air temperature (T8 ), humidity (w8 ), surface radiative 

temperature (~. leaf-to-air vapour concentration difference (D~. calculated 

canopy conductance (GJ, canopy transpiration at the surface (EJ, canopy 

transpiration at 0.25-0.SOm with footprint corrections (······), sensible heat (H) and 

latent heat (LE) fluxes across the interface between crops with wind blowing from 

a canopy with high conductance (Matong) onto a canopy with lower conductance 

(Quarrion). 
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The sensible heat flux (H) calculated from the monorail data was 48% greater over 

Quarrion than Matong in accordance with the Bowen ratio measurements (figure 9.4). 

The latent heat flux was 10% lower over Quarrion than Matong, which agreed with the 

difference in evaporation estimated from canopy conductance. Evaporation, estimated 

from conductance, was lowest at the leading edge of Quarrion and thereafter increased 

slightly as D1 increased with further distance into Quarrion. Variation of surface 

temperature was largest of all the measured parameters, so that large gradients of D1 

were calculated, which reduced Ge and caused the observed variation of evaporation. 

This phenomenon was not observed in the latent heat flux, due to the footprint area of 

the fluxes measured at 0.25 - 0.50 m above canopy height smearing the subtle changes 

that occurred at the interface. Using the footprint corrections (Table 9.1) the variation 

of surf ace transpiration flux was comparable to the variation of the latent heat flux above 

the canopy. 

Data of 24-0ct, 9:00-10:00 

North 
Wind Speed (m!); 4 

---+-~ 
24-0ct 

East 

South 

Figure 9.7 Diurnal variation of wind speed (0.5 m above crop height of 1.02 m) 

and direction on the 24-0ct. 
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On 24-0ct winds were very light and from all directions (figure 9.7). Only data from 

9:00 - 10:00 were suitable for analysis of advection. Data from other times showed the 

contrast between the two crops, but the wind came along the interface confounding the 

analysis of advection. 

The energy balance measured by the Bowen ratio system in the centre of each 

paddock showed high latent heat fluxes (figure 9.8), which were expected as 33 mm of 
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Figure 9.8 Available energy (R-G), sensible heat flux (H) and latent heat flux (LE) 

of the Matong (-) and Quarrion (- - -) crops on 24-0ct, measured with Bowen 

ratio systems. 

335 



Chapter Nine 

rain fell two days earlier on 22-0ct. Part of this latent heat was presumably from 

substantial soil evaporation, which would have been greater for the Quarrion canopy 

than the Matong, as the former had less complete canopy closure (Le = 1.75 & 2.55 

respectively). 

Net radiation measured with the monorail data showed that the sky was clear all day 

(data not shown). Air and leaf temperature increased and humidity decreased over 

Quarrion compared to Matong (figure 9.9), as expected from a southerly wind coming 

over the canopy with higher evaporation rate (Matong) and then across the canopy with 

a lower evaporation rate. Changes in Ta, wa, T1 and D1 along the transect and have been 

fitted to a power function of fetch. Typically, the exponents ranged from 1/4 to 1/24, 

which are consistent with the range given by Itier et al. (1994) for the advection model 

of Philip (1959; 1987). No further attempt was made to fit this model or examine the 

parameters, other than to use the form of the equations to give the shape of the curves. 

Further analysis may reveal whether the fitted model coefficients are plausible under a 

range of conditions. 

The sensible heat flux for this data set, calculated from the temperature and wind 

profiles, wa.S only 25 % of the flux measured by the Bowen ratio systems. This large 

discrepancy was possibly due to the light wind (average 1.08 m.s-1 at 0.50 m above the 
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Figure 9.9 Variation of air temperature (T8 ), humidity (w8 ), surface radiative 

temperature (T~ and leaf-to-air vapour concentration difference (D~ across the 

interface between crops with wind blowing from a canopy with high conductance 

(Matong) onto a canopy with lower conductance (Quarrion). 

336 



Advection between Crops with Different Conductances 

top of the canopy), whereas greater wind speed in the previous data set (12-0ct 09:00-

10:00) allowed the gradient approach to work reasonably well. 

Data of 30-0ct, 11 :00-12:00 

Faster water use by the Matong crop, compared to Quarrion, led to greater soil 

water deficits in Matong and reversed the ranking of conductance of the two crops, so 

that Matong had lower conductance than Quarrion (Chapter Three). North-westerly 

wind in the morning of the 30-0ct (figure 9 .10) was suitable for analysis of advection, 

with wind coming from a canopy of higher conductance across a canopy of lower 

conductance, but in the opposite direction to the previous data sets. This data set 

allowed the analysis of gradients across the transition from high to low conductance, in 

the opposite physical direction to the previous data sets for the 12-0ct and 24-0ct, so 

that it is possible to see if it was the location rather than advection that was causing the 

variation along the transect. 

North 
Wind Speed (n'I~); 30-0ct 

West East 

South 

Figure 9.10 Diurnal variation of wind speed (0.5 m above crop height of 1.07 m) 

and direction on the 30-0ct. 
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The energy balance in the centre of each paddock on 30-0ct showed that the ranking 

of the two crops had reversed, with Quarrion having higher latent heat flux and lower 

sensible heat flux than Matong (figure 9.11). 
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Figure 9.11 Available energy (R-G), sensible heat flux (H) and latent heat flux 

(LE) of the Matong (-. ) and Quarrion (- - -) crops on 30-0ct, measured with 

Bowen ratio systems. 
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Air and leaf temperature and D1 increased over Matong compared to Quarrion, but 

large variability in the humidity prevented any clear differences of humidity between the 

crops (figure 9.12). These observations are consistent with expected advection as the 

wind moved from Quarrion across the interface with Matong showing increasing air and 

surface temperature. The extreme temperatures and D1 combined with the low soil water 

status on this day resulted in more variation along the gradient, presumably due to 

variability in individual plants response to water stress. 
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Figure 9.12 Variation of air temperature (T8), humidity (w8 ), surface radiative 

temperature (~ and leaf-to-air vapour concentration difference (O~ across the 

interface between crops with wind blowing from a canopy with high conductance 

(Quarrion) onto a canopy with lower conductance (Matong) on 30-0ct between 

11 :00-12:00. 
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9.3.2. Transects with no contrast in Conductance 

Data from 18-0ct were suitable for examining transects when both crops had similar 

conductances. The wind was steady from the north averaging 2-3 m.s-I (figure 9.13). 

North 
Wind Speed (m~); 18-0ct 

West East 

South 

Figure 9.13 Diurnal variation of wind speed (0.5 m above crop height of 0.96 m) 

and direction on the 18-0ct. 

The energy balance in the centre of each paddock on 18-0ct showed that both crops 

had similar fluxes of latent and sensible heat (figure 9.14), so that variation along the 

transect could not be attributed to advection. 
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Figure 9.14 Available energy (R-G), sensible heat flux (H) and latent heat flux 

(LE) of the Matong (-) and Quarrion (- - -) crops on 18-0ct, measured with 

Bowen ratio systems. 

High cloud caused some variation in the radiation load (figure 9.15) so that not all 

data could be used. Data from between 13:00-14:00 were selected after removing 

transects when the radiation varied more than 10% from the average. 
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Figure 9.15 Diurnal variation of net radiation (Rn> measured at six second 

intervals measured in conjunction with the monorail data collection on 18-0ct. 

Air temperature and humidity did not change significantly at the interface between 

the crops, but the surface temperature did increase causing an increase in D1 and the 

calculated canopy conductance and evaporation (figure 9.16). The sensible heat and 

latent heat fluxes, calculated from the wind and temperature profiles, were not 

significantly different between the two crops. The higher surface temperature of the 

Quarrion crop may have been due to a more open canopy (Le = 2.26) than the Matong 

canopy (Le = 3.36), so that the infra-red sensors would see a greater contribution from 

the soil, which would have been much warmer than the leaves, since the soil surface was 

dry on this day. 
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Figure 9.16 Variation of air temperature (T8 }, humidity (w8}, surface radiative 

temperature (~. leaf-to-air vapour concentration difference (D~. calculated 

canopy conductance ( GJ, canopy transpiration (EJ, sensible heat (H) and latent 

heat (LE) fluxes across the interface between crops with wind blowing from a 

canopy with low conductance (Quarrion) onto a canopy with higher conductance 

(Matong). 
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9.4. Discussion 

Small gradients of air temperature and humidity were detected along the transect 

between the crops when they had different conductances, which were not apparent when 

the conductances were similar. These gradients occurred when Matong had higher 

conductance than Quarrion and were reversed when the ranking of the crops' 

conductances were reversed, giving confidence to advection being the cause rather than 

some anomaly in the physical location. 

Surface radiative temperature showed stronger gradients along the transect than air 

temperature or humidity. When the ranking of conductance of the crops reversed the 

surface temperature reflected this change (figure 9.12). However, when the 

conductances and evaporation rates of the crops were similar the surf ace temperature 

still indicated Quarrion to be 1 - 2° warmer than Matong (figure 9.16). This could be 

attributed to the more open canopy of Quarrion, resulting in a greater contribution from 

the soil to the measured surface radiative temperature. The difference in surface 

temperature between the crops was the main cause for large differences in the leaf-to-air 

vapour concentration difference. 

Fluxes calculated from wind speed and temperature profiles were realistic in 

conditions of high wind, but too low in light wind. The fluxes were consistent with the 

differences in conductance between the crops, but did not clearly show evidence of 

advection from the edge of the crop with a different conductance. The lack of variation 

of fluxes with fetch was consistent with a step change of fluxes, but could not be 

conclusively distinguished from a step change in conductance or surface concentration. 

This was similar to the variation of sensible heat flux found at the interface between 

irrigated and dryland barley crops, which indicated a step change in surface flux (Itier et 

al., 1994). 

Variation of modelled conductance and evaporation rate along the transect showed a 

step change at the interface due to the different model coefficients for each crop. Some 

adjustment of conductance with increasing downwind distance from the interface was 

observed although this was mainly driven by the variation of surface temperature along 

the transect, which was shown to be somewhat overestimated. The adjustment of 

conductance and evaporation rate with distance from the leading edge was consistent 

with advection, although it was very small. 
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Differences between the variation of latent heat flux calculated from the wind and 

temperature profiles compared to the evaporation rate calculated from canopy 

conductance can be attributed to the different height at which the measurements were 

made. The calculated evaporation rate is the flux that occurs at the surface, whereas the 

latent heat flux is determined over the range of 0.25 - 0.50 m above the top of the 

canopy. The flux above a canopy does not directly relate to the flux at the surface 

immediately below, but has contributions from the surface fluxes over an area of crop 

upwind, known as the footprint area. Using a weighted averaging scheme of the upwind 

surf ace fluxes, similar to that indicated by the analysis of Schuepp et al. ( 1990), to 

correct for the footprint area, the variation of the surf ace flux with distance was similar 

to that calculated at 0.25 - 0.50 m above the crop. 

Different fluxes of the two crops measured by the transect data were comparable to 

differences measured by the Bowen ratio systems at the centre of each paddock. The 

effect of advection on the fluxes was very small, if it occurred at all. This can be 

attributed to there being only a small contrast in the energy balance of the crops (Chapter 

Three). The reduced sensitivity of canopy transpiration to canopy conductance was 

attributed to the effect of canopy boundary layers and the modification of the air 

surrounding the canopy. The change in canopy conductance at the interface did result in 

lower rates of transpiration, but the change was sufficiently small that advection had 

minimal effect on the fluxes as a function of distance from the leading edge. 

These results imply that advection between small plots with contrasting evaporation 

rates should not significantly affect total water use, in contrast to the estimates by Cowan 

(1988). Results obtained from small plots should be a reasonably accurate reflection of 

water use that would occur in extensive areas. In the field trial reported in this chapter, 

small plots of each of the varieties were grown embedded in the extensive paddocks of 

both varieties. Water use in the small plots was not significantly different from water use 

in the large plots (Condon, unpublished data), confirming the conclusions drawn from 

this study that advection was not significant. That is not to say that advection is never 

significant. Other advection studies have shown large variation of fluxes following 

changes in surface properties (Rider et al., 1963; Lang et al., 1974). Small plots grown 

in extensive areas of fallow, denuded of vegetation, or well irrigated plots in dry 

conditions would be much more affected by advection than this study. So long as small 

plots are grown in an area with similar vegetation, then advection between the plots 

should have minimal impact on water use. 

345 



Chapter Nine 

9.5. Conclusions 

Advection of heat was measured at the interface between two crops with contrasting 

conductances. The increase in air temperature was up to 0.5°C over 28 m downwind 

from the leading edge. Leaf temperature increased by several degrees in the crop with 

lower conductance, but substantial spatial variability along the transect prevented this 

from being attributed to advection. Change in air humidity was not observed in relation 

to the interface between the contrasting crops. 

Calculated fluxes of sensible and latent heat showed a step change at the interface, 

but did not show any further variation with distance from the leading edge. Calculated 

canopy conductance and transpiration also showed a step change with some further 

minor readjustment over 10 m downwind from the leading edge. 

These observations, although inconclusive, suggest that in this case advection did not 

significantly affect water use of crops at the interface with vegetation of different 

conductances. Advection may be more significant in situations with more marked 

contrasts such as irrigated and unirrigated crops. Water use measured in small plots 

should be representative of water use that would occur in extensive paddocks, so long as 

the small plots are surrounded by similar, though not necessarily identical, vegetation. 

The novel system of travelling sensors provided direct observations of the spatial 

variation of the environment. There are difficulties in the analysis of these data in terms 

of advection, but further analysis by use of models may yet reveal whether advection was 

significant. Despite these problems, the technical approach presented in this chapter may 

in future be useful for investigating other problems of spatial variation of the 

environment. 
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Chapter Ten 

10.1. Preamble 

Scaling physiological processes has recently received considerable attention in the 

scientific literature, due to the need for a better understanding of the response of 

vegetation to increasing atmospheric C02 concentration and associated climate change 

(Carlson, 1991; Ehleringer & Field, 1993; Jarvis, 1995). The complexity of the 

interactions between vegetation and the environment requires the use of mathematical 

models to accurately describe canopy processes of photosynthesis and transpiration. 

Existing models adequately describe leaf photosynthesis (Farquhar et al., 1980), 

conductance (Leuning, 1995) and radiation penetration through canopies (Goudriaan, 

1977). Many researchers have presented frameworks for scaling conductance (Raupach 

& Finnigan, 1988; Kim & Verma, 1991b; Rochette et al., 1990; Baldocchi, 1991; 1993; 

Raupach, 1995) and photosynthesis (Sellers et al., 1992; Norman, 1993; Amthor, 1994), 

which have only recently been tested with suitable field experiments with concurrent 

measurements at leaf and canopy scales (Amthor et al., 1994; Baldocchi & Harley, 

1995). There remained a need to compare different approaches to scaling on different 

types of vegetation and under less than ideal conditions. This thesis has attempted to fill 

this gap with a thorough analysis of the scaling of photosynthesis and water use from 

leaves to cariopies in dryland wheat crops. To conclude this thesis the main findings are 

presented in a broader context in the following discussion. 

10.2. Models of Stomata! Conductance and Photosynthesis 

Stomata} models which utilise the correlation between conductance and 

photosynthesis have been successfully applied in many experiments (Ball et al., 1987; 

Leuning, 1990; 1995; Kim & Verma, 199la; Aphalo & Jarvis, 1993), including the data 

in Chapter Four. While this is an elegant approach, use of photosynthesis as a variable in 

the model may be opening Pandora's proverbial box. For without measurements of 

photosynthesis the stomata! model must be coupled with a model of photosynthesis. The 

widely accepted Farquhar model of photosynthesis accurately describes the response of 

C02 exchange to short term variation of irradiance, C02 concentration and temperature. 

But the response of photosynthesis, and the appropriate parameters of a model, to long 

term changes of the environment such as acclimation to high C02, high temperature or 

water deficits, are not well described let alone predictable, as shown in Chapter Seven. 

Many empirical functions have been developed to describe stomata! response to soil 

water deficits independently of photosynthesis (Schulze, 1986; Inoue et al., 1989). 

348 



General Discussion 

When using the correlation of conductance with photosynthesis, functions relating 

conductance to soil water are redundant, but few functions exist that relate 

photosynthesis to soil water deficits. Periodic and terminal drought is typical of dryland 

agriculture, almost by definition, and will always affect photosynthesis and conductance 

whenever water-use efficiency is considered. Indeed, it is not the case that soil water 

deficits are exceptional conditions, but rather that they are more typical conditions for 

many crops, forests and natural ecosystems around the world (Lieth, 1973; Woodward, 

1987). 

So are we any further ahead? In some respects, utilising the correlation of 

conductance with photosynthesis is just circling the real issue of understanding plant 

response to real (non-ideal) environments. On the other hand, there are at least two 

benefits to this approach. Firstly, following recent technological developments, eddy 

correlation measurements of canopy C02 fluxes are becoming a routine 

micrometeorological measurement. Concurrent measurement of C02 and H20 fluxes 

will allow testing of this type of stomatal model on a diverse range of canopies and under 

a range of conditions. Use of this model will overcome one of the main constraints for 

effective use of the Penman-Monteith model of canopy evaporation; obtaining accurate 

estimates of canopy conductance. As databases of canopy C02 fluxes expand, the use of 

models that link the C02 and H20 fluxes will provide an extra constraint for valid 

predictions of vegetation response to climate change. 

Secondly, a great deal more is known about the mechanistic nature of photosynthesis 

than stomatal behaviour. Many of the genes that control photosynthesis are known and 

are being used to manipulate photosynthesis through molecular techniques, (eg.; Stitt & 

Schulze, 1994 ). These may lead to a mechanistic understanding, and hence better 

models, of adaptation of photosynthesis to the environment. This will probably also 

involve better understanding of the coordination between photosynthesis and stomatal 

conductance. The validity of stomatal models that use this coordination will be tested as 

the underlying mechanism is elucidated. 

In Chapter Four stomatal conductance of sunlit leaves was modelled simply as a 

function of photosynthesis and a response to humidity. The humidity variable was found 

to be the most important accounting for 70% of the variation in stomatal conductance. 

Yet, the sensitivity of stomatal conductance to humidity varied between days, decreasing 

with soil water deficit. Variation of stomatal model parameters was identified as a key 
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limitation to predicting stomatal conductance a priori. Perhaps, the model of 

optimisation of carbon gain with respect to water loss may yet provide a useful 

framework for analysing stomatal behaviour under increasing water stress (Cowan, 

1982), even though it was not found to be the best model for the data in this thesis. The 

stomatal model, with parameters derived from leaf scale measurements, also adequately 

described the variation of canopy conductance, demonstrating the scaling of conductance 

from leaves to canopies (Chapter Five). Further measurements of C02 and H20 fluxes 

on a range of canopies at high temperatures and under water stress may provide 

significant insight into the applicability of this type of model. With further testing this 

stomatal model may then be used in models of crop and forest growth or in models of 

global carbon cycling. Linking the water and carbon cycles of the globe through use of 

this stomatal model, with correlations of conductance and photosynthesis, will provide 

extra ways to constrain model predictions to realistic values. 

Similarly, the decline in photosynthesis during each day is a fascinating but 

unresolved observation in this thesis (Chapter Seven). As previously stated it is unclear 

whether the decline is in electron transport, RuBP regeneration, Rubisco activity or steps 

leading to carbon export from the leaf. The tight coordination and regulation of the 

components of photosynthesis and carbon metabolism confound research into the 

mechanism of this phenomenon, although molecular approaches may soon provide some 

insight. It is also difficult to realistically reproduce in controlled environments the 

decline in soil water status that is observed in the field. New approaches to research on 

the effects of water stress on photosynthesis and stomatal behaviour are needed. 

10.3. Scaling and Canopy Photosynthesis Models 

A great deal of research effort has gone into models of canopy photosynthesis over 

the last 30 years since the early work of de Wit ( 1965), Duncan et al. ( 1967), Lemon et 

al., (1971), Sinclair (1976) and Norman (1979). They applied their models primarily to 

agricultural crops and demonstrated the importance of separating sunlit and shaded 

leaves as well as beam and diffuse radiation (Norman, 1980). Unfortunately, these 

widely accepted practices have not been taken up by canopy modellers working in other 

fields, such as those working on the optimal distribution of nitrogen in canopies (Hirose 

& Werger, 1987a; Anten et al., 1995; Badeck, 1995; Sands, 1995) and those developing 

simple models for studying the response of vegetation to climate change (Sellers et al., 

1992; Amthor et al., 1994; Wang & Jarvis, 1993; Lloyd et al., 1995). These simple 
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models can introduce errors when tuned for canopies of particular leaf area index or leaf 

nitrogen content. For example, when a big leaf model tuned to accurately predict canopy 

photosynthesis at a leaf area index of 2.0 was applied to a canopy of leaf area index of 

4.0 the model overestimated daily gross canopy photosynthesis by 25% (Chapter Six). 

Predictions are needed, but systematic biases from such models may lead to incorrect 

conclusions about the relative importance of different vegetation types in mitigating 

rising atmospheric C02 concentration. 

A novel approach to modelling canopy photosynthesis was presented in Chapter Six. 

This involved use of separate single-layered models for the sunlit and shaded leaves, 

allowing incorporation of decreasing photosynthetic capacity in the canopy, and when 

combined with stomatal and energy balance models provided a computationally simple 

model that was as accurate as a multi-layered model (Chapter Eight). This new model 

fulfils the criteria of being mechanistically based on processes at a lower scale with 

corresponding parameters and functions with similar definitions at both scales (Norman, 

1993; Raupach, 1995; Jarvis, 1995), while being sufficiently simple and accurate to be 

useful (Raupach & Finnigan, 1988). Modification of this model for use with canopies 

that require more complex light penetration models due either to clumping or penumbral 

effects will extend its use to forest canopies as well. Incorporation of this approach into 

models of photosynthesis of other ecosystems will simplify them and allow them to be 

more easily incorporated into higher level models. 

Canopy models (such as presented in Chapter Eight) that combine the physiological 

processes of photosynthesis and stomata} behaviour with the physical processes of 

radiation penetration, energy partitioning and turbulent transport are very useful for 

investigating a range of issues. Use of mechanistic models to describe the component 

processes allows the non-linear interactions and feedback effects to be properly 

represented, so that extrapolation to new environmental conditions are more likely to be 

valid. For example, in Chapter Eight, model predictions were that transpiration 

efficiency and water-use efficiency (including soil fluxes) would be approximately 1.8 

fold as much in response to doubling of atmospheric C02 concentrations, varying only 

slightly with leaf area index, although acclimation of photosynthesis may reduce this 

response. Incorporation of the effects of acclimation of plants to altered conditions will 

further enhance the utility of this model. 
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10.4. Water-Use Efficiency 

Carbon isotope discrimination (Li) provided a practical means to link physiological 

traits to agronomic issues (Farquhar et al., 1982; Farquhar & Richards, 1984). 

However, the link between Li and water-use efficiency via physiological processes is not 

straight-forward (Farquhar et al., 1989a; Hall et al., 1994). Reduced sensitivity of 

transpiration to stomata conductance at increasing spatial scales (Jarvis & McNaughton, 

1986), was seen as a potential limitation to improvements in water-use efficiency where 

changes came about from reduced stomata} conductance rather than increased 

photosynthetic capacity (Farquhar et al., 1989b). Interactions between vegetation and 

the atmosphere and advection following a change in stomata! conductance of a crop 

were seen as possibly reversing benefits to water-use efficiency from reduced 

conductance (Cowan, 1988). Field experiments showed that the relationship between Li 

and crop yields could be reversed in different conditions (Condon et al., 1990), 

depending on water availability amongst other factors, suggesting that the canopy­

atmosphere interactions may confound attempts to improve water-use efficiency through 

altered conductance. The Wagga Wagga field trials examined in this thesis were 

established as the definitive test of the relationship between Li and water-use efficiency in 

the worst scenario where differences in Li were mostly due to differences in conductance, 

rather than photosynthetic capacity. 

Despite the effect of canopy boundary layers, reduced stomata} conductance in the 

Quarrion cultivar of wheat did result in higher water-use efficiency on individual days 

and over integrated over the entire 1990 growing season compared to Matong (Condon 

& Richards, 1993 Chapter Three). Low sensitivity of transpiration to stomata! 

conductance did reduce the benefit of lower stomata! conductance to canopy water-use 

efficiency, but did not obscure it entirely; 40% reduction of leaf conductance was 

estimated to result in 36% greater leaf transpiration efficiency and 19% greater canopy 

transpiration efficiency, but varied somewhat with the absolute conductance and the 

wind speed (Chapter Eight). Advection did not cause a reversal of water-use efficiency 

or appear to have much impact in the crops and conditions examined here (Chapter 

Nine), although it may play a significant role if small plots were grown in very 

contrasting surrounds such as bare ground. Unexpectedly, reduced stomata! 

conductance was associated with low early vigour in Quarrion, resulting in lower canopy 

leaf area index and greater soil evaporation, which partially offset the gains from reduced 

transpiration. 
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10.5. Final Words 

The modelling presented in this thesis will be useful in many different applications. 

The sun/shade canopy model has the same form as the leaf scale models facilitating 

comparison of the response of fluxes to the environment at both scales. This feature 

allowed the decline of photosynthesis during the day to be analysed at both the leaf and 

canopy scale. The mechanistic representation in this modelling of both physical and 

physiological processes should therefore assist in making predictions of the response of 

canopy fluxes to both altered physiological traits and climate change. 
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